Fragmental Frequency Analysis Method to Estimate Electrical Cell Parameters from Bioimpedance Study

被引:13
作者
Das, Debanjan [1 ]
Kamil, Farhan Ahmad [1 ]
Agrawal, Snehil [1 ]
Biswas, Karabi [1 ]
Das, Soumen [2 ]
机构
[1] Indian Inst Technol, Dept Elect Engn, Kharagpur 721302, W Bengal, India
[2] Indian Inst Technol, Sch Med Sci & Technol, Kharagpur 721302, W Bengal, India
关键词
Bioimpedance; Bode-Nyquist plot; ECIS; fragmental frequency analysis; impedance spectrum; IMPEDANCE SPECTROSCOPY; ENDOTHELIAL-CELLS; MAMMALIAN-CELLS; BIOSENSOR; MICROELECTRODE; CYTOTOXICITY;
D O I
10.1109/TIM.2014.2303553
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
This paper introduces an alternate approach utilizing the fragmental frequency analysis method for analyzing bioimpedance data to estimate electrical cell parameters. Impedance of cervical cancer cells (HeLa) in phosphate buffer saline media is measured using an electric cell-substrate impedance sensing (ECIS) device and impedance analyzer. The measured impedance data were visualized by modeling an equivalent electrical circuit of the system considering the dominancy of individual parameters of the ECIS system and analyzed in different frequency zones. The present approach eliminates the convergence inaccuracy in fitting the experimental impedance data with fitting software arising due to invalid initial conditions, and a large number of data points. This method provides high-frequency characterization, modeling of ECIS system, knowledge of effect of ECIS model parameters with frequency, and an alternate way to calculate model parameters.
引用
收藏
页码:1991 / 2000
页数:10
相关论文
共 43 条
[11]   Electrical characterization of human mesenchymal stem cell growth on microelectrode [J].
Cho, Sungbo ;
Thielecke, Hagen .
MICROELECTRONIC ENGINEERING, 2008, 85 (5-6) :1272-1274
[12]  
Curtis TM, 2009, LAB CHIP, V9, P2176, DOI [10.1039/b901314h, 10.1039/b901314b]
[13]   The electric resistance and capacity of blood for frequencies between 800 and 4 1/2 million cycles. [J].
Fricke, H ;
Morse, S .
JOURNAL OF GENERAL PHYSIOLOGY, 1925, 9 (02) :153-167
[14]   Fabrication of a microfluidic cell analyzer in a microchannel using impedance spectroscopy [J].
Gawad, S ;
Heuschkel, M ;
Leung-Ki, Y ;
Iuzzolino, R ;
Schild, L ;
Lerch, P ;
Renaud, P .
1ST ANNUAL INTERNATIONAL IEEE-EMBS SPECIAL TOPIC CONFERENCE ON MICROTECHNOLOGIES IN MEDICINE & BIOLOGY, PROCEEDINGS, 2000, :297-301
[15]   Micromachined impedance spectroscopy flow cytometer for cell analysis and particle sizing [J].
Gawad, S ;
Schild, L ;
Renaud, P .
LAB ON A CHIP, 2001, 1 (01) :76-82
[16]   A MORPHOLOGICAL BIOSENSOR FOR MAMMALIAN-CELLS [J].
GIAEVER, I ;
KEESE, CR .
NATURE, 1993, 366 (6455) :591-592
[17]   MICROMOTION OF MAMMALIAN-CELLS MEASURED ELECTRICALLY [J].
GIAEVER, I ;
KEESE, CR .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1991, 88 (17) :7896-7900
[18]   Sensitivity of cell-based biosensors to environmental variables [J].
Gilchrist, KH ;
Giovangrandi, L ;
Whittington, RH ;
Kovacs, GTA .
BIOSENSORS & BIOELECTRONICS, 2005, 20 (07) :1397-1406
[19]   ALGORITHMS FOR SOLUTION OF NON-LINEAR LEAST-SQUARES PROBLEM [J].
GILL, PE ;
MURRAY, W .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1978, 15 (05) :977-992
[20]  
Goda N., 2007, BIOCYBERN BIOMED ENG, V27, P227