copula;
discrete time series;
Markov regression models;
maximum likelihood;
probit regression model;
serial correlation;
INFERENCE;
SELECTION;
D O I:
10.1080/02664760802499287
中图分类号:
O21 [概率论与数理统计];
C8 [统计学];
学科分类号:
020208 ;
070103 ;
0714 ;
摘要:
A fully parametric first-order autoregressive (AR(1)) model is proposed to analyse binary longitudinal data. By using a discretized version of a copula, the modelling approach allows one to construct separate models for the marginal response and for the dependence between adjacent responses. In particular, the transition model that is focused on discretizes the Gaussian copula in such a way that the marginal is a Bernoulli distribution. A probit link is used to take into account concomitant information in the behaviour of the underlying marginal distribution. Fixed and time-varying covariates can be included in the model. The method is simple and is a natural extension of the AR(1) model for Gaussian series. Since the approach put forward is likelihood-based, it allows interpretations and inferences to be made that are not possible with semi-parametric approaches such as those based on generalized estimating equations. Data from a study designed to reduce the exposure of children to the sun are used to illustrate the methods.
机构:
George Washington Univ, Dept Stat, Washington, DC 20052 USAGeorge Washington Univ, Dept Stat, Washington, DC 20052 USA
Wang, Huixia Judy
Feng, Xingdong
论文数: 0引用数: 0
h-index: 0
机构:
Shanghai Univ Finance & Econ, Inst Data Sci & Stat, Shanghai 200433, Peoples R China
Shanghai Univ Finance & Econ, Sch Stat & Management, Shanghai 200433, Peoples R China
Minist Educ, Key Lab Math Econ SUFE, Shanghai 200433, Peoples R ChinaGeorge Washington Univ, Dept Stat, Washington, DC 20052 USA
Feng, Xingdong
Dong, Chen
论文数: 0引用数: 0
h-index: 0
机构:
Shanghai Univ Finance & Econ, Inst Data Sci & Stat, Shanghai 200433, Peoples R China
Shanghai Univ Finance & Econ, Sch Stat & Management, Shanghai 200433, Peoples R China
Minist Educ, Key Lab Math Econ SUFE, Shanghai 200433, Peoples R ChinaGeorge Washington Univ, Dept Stat, Washington, DC 20052 USA
机构:
Univ Gadjah Mada, Fac Math & Nat Sci, Dept Math, Yogyakarta 55281, Indonesia
Bengkulu Univ, Fac Math & Nat Sci, Dept Stat, Bengkulu 38371, IndonesiaUniv Gadjah Mada, Fac Math & Nat Sci, Dept Math, Yogyakarta 55281, Indonesia
Novianti, Pepi
Gunardi
论文数: 0引用数: 0
h-index: 0
机构:
Univ Gadjah Mada, Fac Math & Nat Sci, Dept Math, Yogyakarta 55281, IndonesiaUniv Gadjah Mada, Fac Math & Nat Sci, Dept Math, Yogyakarta 55281, Indonesia
Gunardi
Rosadi, Dedi
论文数: 0引用数: 0
h-index: 0
机构:
Univ Gadjah Mada, Fac Math & Nat Sci, Dept Math, Yogyakarta 55281, IndonesiaUniv Gadjah Mada, Fac Math & Nat Sci, Dept Math, Yogyakarta 55281, Indonesia
机构:
BM&FBOVESPA, Praca Antonio Prado, Sao Paulo, SP, BrazilBM&FBOVESPA, Praca Antonio Prado, Sao Paulo, SP, Brazil
Fernandez, M.
Garcia, Jesus E.
论文数: 0引用数: 0
h-index: 0
机构:
Univ Estadual Campinas, Dept Stat, Rua Sergio Buarque de Holanda 651, BR-13083859 Campinas, SP, BrazilBM&FBOVESPA, Praca Antonio Prado, Sao Paulo, SP, Brazil
Garcia, Jesus E.
Gonzalez-Lopez, V. A.
论文数: 0引用数: 0
h-index: 0
机构:
Univ Estadual Campinas, Dept Stat, Rua Sergio Buarque de Holanda 651, BR-13083859 Campinas, SP, BrazilBM&FBOVESPA, Praca Antonio Prado, Sao Paulo, SP, Brazil
机构:
Department of Financial Mathematics,Peking UniversityDepartment of Financial Mathematics,Peking University
Zhengyong Zhou
Jiehua Xie
论文数: 0引用数: 0
h-index: 0
机构:
School of Statistics,Jiangxi University of Finance and EconomicsDepartment of Financial Mathematics,Peking University
Jiehua Xie
Jingping Yang
论文数: 0引用数: 0
h-index: 0
机构:
Department of Financial Mathematics,Peking University
Key Laboratory of Mathematical Economics and Quantitative Finance,Ministry of EducationDepartment of Financial Mathematics,Peking University