An extended Fibonacci sequence associated with the discrete hungry Lotka-Volterra system

被引:0
|
作者
Shinjo, Masato [1 ]
Akaiwa, Kanae [1 ]
Iwasaki, Masashi [2 ]
Nakamura, Yoshimasa [1 ]
机构
[1] Kyoto Univ, Grad Sch Informat, Sakyo Ku, Yoshida Hommachi, Kyoto 6068501, Japan
[2] Kyoto Prefectural Univ, Fac Life & Environm Sci, Sakyo Ku, Nakaragi Cho, Kyoto 6068522, Japan
基金
日本学术振兴会;
关键词
Fibonacci sequence; Casorati determinant; discrete hungry Lotka-Volterra system;
D O I
10.1142/S1793524517500437
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
The integrable hungry Lotka-Volterra (hLV) system stands for a prey-predator model in mathematical biology. The discrete-time hLV (dhLV) system is derived from a time discretization of the hLV system. The solution to the dhLV system is known to be represented by using the Casorati determinant. In this paper, we show that if the entries of the Casorati determinant become an extended Fibonacci sequence at the initial discrete time, then those are also an extended Fibonacci sequence at any discrete time. In other words, the extended Fibonacci sequence always appears in the entries of the Casorati determinant under the time evolution of the dhLV system with suitable initial setting. We also show that one of the dhLV variables converges to the ratio of two successive extended Fibonacci numbers as the discrete time goes to infinity.
引用
收藏
页数:16
相关论文
共 50 条
  • [31] Almost periodic solutions of a discrete Lotka-Volterra competition system with delays
    Li, Zhong
    Chen, Fengde
    He, Mengxin
    NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2011, 12 (04) : 2344 - 2355
  • [32] Pattern formation and parameter inversion for a discrete Lotka-Volterra cooperative system
    Xu, Li
    Liu, Jiayi
    Zhang, Guang
    CHAOS SOLITONS & FRACTALS, 2018, 110 : 226 - 231
  • [33] A necessary and sufficient condition for permanence of a Lotka-Volterra discrete system with delays
    Saito, Y
    Ma, WB
    Hara, T
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2001, 256 (01) : 162 - 174
  • [34] THE PERIOD IN THE LOTKA-VOLTERRA SYSTEM IS MONOTONIC
    WALDVOGEL, J
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1986, 114 (01) : 178 - 184
  • [35] INTEGRABLE DISCRETISATION OF THE LOTKA-VOLTERRA SYSTEM
    He, Yang
    Sun, Yajuan
    Shang, Zaijiu
    JOURNAL OF COMPUTATIONAL MATHEMATICS, 2015, 33 (05): : 468 - 494
  • [36] Rational integration of the Lotka-Volterra system
    Ollagnier, JM
    BULLETIN DES SCIENCES MATHEMATIQUES, 1999, 123 (06): : 437 - 466
  • [37] Liouvillian integration of the Lotka-Volterra system
    Ollagnier J.M.
    Qualitative Theory of Dynamical Systems, 2001, 2 (2) : 307 - 358
  • [38] Lotka-Volterra system in a random environment
    Dimentberg, MF
    PHYSICAL REVIEW E, 2002, 65 (03): : 1 - 036204
  • [39] DIFFUSIVE LOTKA-VOLTERRA OSCILLATING SYSTEM
    JORNE, J
    JOURNAL OF THEORETICAL BIOLOGY, 1977, 65 (01) : 133 - 139
  • [40] On an Integrable Discretisation of the Lotka-Volterra System
    He, Yang
    Sun, Yajuan
    NUMERICAL ANALYSIS AND APPLIED MATHEMATICS (ICNAAM 2012), VOLS A AND B, 2012, 1479 : 1295 - 1298