Chow motives of twisted flag varieties

被引:15
作者
Calmes, B.
Petrov, V.
Semenov, N.
Zainoulline, K.
机构
[1] Univ Alberta, Dept Math & Stat Sci, Edmonton, AB T6G 2G1, Canada
[2] St Petersburg State Univ, Dept Math, St Petersburg, Russia
[3] Univ Bielefeld, Fak Math, D-33501 Bielefeld, Germany
关键词
chow motive; anisotropic projective homogeneous variety;
D O I
10.1112/S0010437X06002053
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let G be an adjoint simple algebraic group of inner type. We express the Chow motive (with integral coefficients) of an anisotropic projective G-homogeneous variety in terms of motives of simpler G-homogeneous varieties, namely, those that correspond to maximal parabolic subgroups of G. We decompose the motive of a generalized Severi-Brauer variety SB2(A) of a division algebra A of degree 5 into a direct sum of twisted motives of the Severi-Brauer variety SB(B) of a division algebra B Brauer-equivalent to the tensor square A(x2). As an application we provide another counter-example to the uniqueness of a direct sum decomposition in the category of motives with integral coefficients.
引用
收藏
页码:1063 / 1080
页数:18
相关论文
共 22 条
[1]  
[Anonymous], MOTIVIC COHOMOLOGY Z
[2]  
Auslander M., 1960, Trans. Amer. Math. Soc, V97, P367, DOI [DOI 10.1090/S0002-9947-1960-0121392-6, DOI 10.2307/1993378]
[3]   FUNCTION-FIELDS OF GENERALIZED BRAUER-SEVERI VARIETIES [J].
BLANCHET, A .
COMMUNICATIONS IN ALGEBRA, 1991, 19 (01) :97-118
[4]  
BONNET JP, 2003, DOC MATH, V8, P247
[5]   On motivic decompositions arising from the method of Bialynicki-Birula [J].
Brosnan, P .
INVENTIONES MATHEMATICAE, 2005, 161 (01) :91-111
[6]  
CARR M, 2005, IN PRESS EXP MATH
[7]   Motivic decomposition of isotropic projective homogeneous varieties [J].
Chernousov, V ;
Gille, S ;
Merkurjev, A .
DUKE MATHEMATICAL JOURNAL, 2005, 126 (01) :137-159
[8]  
CHERNOUSOV V, 2004, MOTIVIC DECOMPOSITIO
[9]  
Fulton W., 1998, INTERSECTION THEORY
[10]  
GROTHENDIECK A, 1965, SEMIN BOURBAKI, V9, P287