Amplified Spontaneous Emission Realized by Cogrowing Large/Small Grains with Self-Passivating Defects and Aligning Transition Dipoles

被引:21
作者
Bai, Yujie [1 ,2 ]
Qin, Jiajun [1 ,2 ]
Shi, Lei [1 ,2 ]
Zhang, Jia [3 ]
Wang, Miaosheng [3 ]
Zhan, Yiqiang [4 ]
Zou, Han [5 ]
Haacke, Stefan [5 ]
Hou, Xiaoyuan [1 ,2 ]
Zi, Jian [1 ,2 ]
Hu, Bin [3 ]
机构
[1] Fudan Univ, Minist Educ, Key Lab Micro & Nano Photon Struct, State Key Lab Surface Phys, Shanghai 200433, Peoples R China
[2] Fudan Univ, Collaborat Innovat Ctr Adv Microstruct, Shanghai 200433, Peoples R China
[3] Univ Tennessee, Dept Mat Sci & Engn, Knoxville, TN 37996 USA
[4] Fudan Univ, Ctr Micro Nano Syst, SIST, Shanghai 200433, Peoples R China
[5] Univ Strasbourg, CNRS, UMR 7504, Inst Phys & Chim Mat Strasbourg, F-67000 Strasbourg, France
基金
美国国家科学基金会; 中国国家自然科学基金;
关键词
amplified spontaneous emission; grain boundary engineering; passivation; perovskites; transition dipoles; LIGHT-EMITTING-DIODES; METHYLAMMONIUM LEAD IODIDE; HALIDE PEROVSKITE; NANOWIRE LASERS; PERFORMANCE; POLARIZATION; MIGRATION;
D O I
10.1002/adom.201900345
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
This paper reports an amplified spontaneous emission (ASE) initiated by intrinsically passivating grain boundary defects and aligning transition dipoles in polycrystalline perovskite (MAPbBr(3)) films. The method is developed by using concurrently occurring fast and slow growths to attach small grains on surfaces of large grains toward low-threshold ASE. This materials processing utilizes one-step solution method of mixing two MAPbBr(3) precursor (PbBr2-based and Pb(Ac)(2) center dot 3H(2)O-based) solutions to control two subsequent growths: quickly growing large grains followed by slowly growing small grains, leading to unique emitting centers from large grains and self-doping agents from small grains. With this design, spectral narrowing phenomenon is observed from the large grains with the full width at half maximum decreasing from 21 to 4 nm when the pumping fluence is increased from 2 to 10 mu W, generating an efficient ASE. Concurrently, the observed ASE shows a linear polarization reaching 21.1%, indicating that the transition dipoles in large grains are linearly polarized with coherent interaction. Therefore, this processing strategy presents a unique method to intrinsically passivate grain boundary defects and align transition dipoles toward developing ASE by attaching small grains (serving as passivation agent) to the surfaces of large grains (functioning as light-emitting centers).
引用
收藏
页数:7
相关论文
共 45 条
[1]   Maximizing and stabilizing luminescence from halide perovskites with potassium passivation [J].
Abdi-Jalebi, Mojtaba ;
Andaji-Garmaroudi, Zahra ;
Cacovich, Stefania ;
Stavrakas, Camille ;
Philippe, Bertrand ;
Richter, Johannes M. ;
Alsari, Mejd ;
Booker, Edward P. ;
Hutter, Eline M. ;
Pearson, Andrew J. ;
Lilliu, Samuele ;
Savenije, Tom J. ;
Rensmo, Hakan ;
Divitini, Giorgio ;
Ducati, Caterina ;
Friend, Richard H. ;
Stranks, Samuel D. .
NATURE, 2018, 555 (7697) :497-+
[3]   Photovoltaic and Amplified Spontaneous Emission Studies of High-Quality Formamidinium Lead Bromide Perovskite Films [J].
Arora, Neha ;
Dar, M. Ibrahim ;
Hezam, Mahmoud ;
Tress, Wolfgang ;
Jacopin, Gwenole ;
Moehl, Thomas ;
Gao, Peng ;
Aldwayyan, Abdulah Saleh ;
Deveaud, Benoit ;
Gratzel, Michael ;
Nazeeruddin, Mohammad Khaja .
ADVANCED FUNCTIONAL MATERIALS, 2016, 26 (17) :2846-2854
[4]   Defect migration in methylammonium lead iodide and its role in perovskite solar cell operation [J].
Azpiroz, Jon M. ;
Mosconi, Edoardo ;
Bisquert, Juan ;
De Angelis, Filippo .
ENERGY & ENVIRONMENTAL SCIENCE, 2015, 8 (07) :2118-2127
[5]   Manipulating Ion Migration for Highly Stable Light-Emitting Diodes with Single-Crystalline Organometal Halide Perovskite Microplatelets [J].
Chen, Mingming ;
Shan, Xin ;
Geske, Thomas ;
Li, Junqiang ;
Yu, Zhibin .
ACS NANO, 2017, 11 (06) :6312-6318
[6]   MAPbl3-x Clx Mixed Halide Perovskite for Hybrid Solar Cells: The Role of Chloride as Dopant on the Transport and Structural Properties [J].
Colella, Silvia ;
Mosconi, Edoardo ;
Fedeli, Paolo ;
Listorti, Andrea ;
Gazza, Francesco ;
Orlandi, Fabio ;
Ferro, Patrizia ;
Besagni, Tullo ;
Rizzo, Aurora ;
Calestani, Gianluca ;
Gigli, Giuseppe ;
De Angelis, Filippo ;
Mosca, Roberto .
CHEMISTRY OF MATERIALS, 2013, 25 (22) :4613-4618
[7]   Random lasing in organo-lead halide perovskite microcrystal networks [J].
Dhanker, R. ;
Brigeman, A. N. ;
Larsen, A. V. ;
Stewart, R. J. ;
Asbury, J. B. ;
Giebink, N. C. .
APPLIED PHYSICS LETTERS, 2014, 105 (15)
[8]   Ionic transport in hybrid lead iodide perovskite solar cells [J].
Eames, Christopher ;
Frost, Jarvist M. ;
Barnes, Piers R. F. ;
O'Regan, Brian C. ;
Walsh, Aron ;
Islam, M. Saiful .
NATURE COMMUNICATIONS, 2015, 6
[9]   Continuous-Wave Lasing in Cesium Lead Bromide Perovskite Nanowires [J].
Evans, Tyler J. S. ;
Schlaus, Andrew ;
Fu, Yongping ;
Zhong, Xinjue ;
Atallah, Timothy L. ;
Spencer, Michael S. ;
Brus, Louis E. ;
Jin, Song ;
Zhu, X. -Y. .
ADVANCED OPTICAL MATERIALS, 2018, 6 (02)
[10]   Ferroelectricity of CH3NH3Pbl3 Perovskite [J].
Fan, Zhen ;
Xiao, Juanxiu ;
Sun, Kuan ;
Chen, Lei ;
Hu, Yating ;
Ouyang, Jianyong ;
Ong, Khuong P. ;
Zeng, Kaiyang ;
Wang, John .
JOURNAL OF PHYSICAL CHEMISTRY LETTERS, 2015, 6 (07) :1155-1161