Classification between Early Onset Alzheimer's disease and frontotemporal dementia using a single neuroimaging feature

被引:1
作者
Perez-Millan, Agnes [1 ,2 ]
Borrell, Laia [2 ]
Contador, Jose [1 ]
Balasa, Mircea [1 ,3 ]
Llado, Albert [1 ]
Sanchez-Valle, Raquel [1 ]
Sala-Llonch, Roser [2 ,4 ]
机构
[1] Univ Barcelona, Fundacio Clin Recerca Biomed, Inst Invest Biomed August Pi i Sunyer IDIBAP,Hosp, Neurol Serv,Alzheimers Dis & Other Cognit Disorde, Barcelona 08036, Spain
[2] Univ Barcelona, Fac Med, Inst Neurosci Dept Biomed, Barcelona 08036, Spain
[3] Global Brain Heath Inst, Equ Brain Hlth, Dublin, Ireland
[4] CIBERNED, Ctr Invest Biomed Red Enfermedades Neurodegenerat, Madrid, Spain
来源
EMERGING TOPICS IN ARTIFICIAL INTELLIGENCE (ETAI) 2022 | 2022年 / 12204卷
关键词
Alzheimer's Disease; Frontotemporal Dementia; Neuroimaging; Magnetic Resonance Images; Machine learning; Principal Component Analysis; Atrophy Patterns; Neuroimaging Markers; HUMAN CEREBRAL-CORTEX; BEHAVIORAL VARIANT; AUTOMATIC CLASSIFICATION; ASSOCIATION WORKGROUPS; DIAGNOSTIC GUIDELINES; NATIONAL INSTITUTE; MRI; RECOMMENDATIONS; THICKNESS; ATROPHY;
D O I
10.1117/12.2632990
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
INTRODUCTION: Early Onset Alzheimer's Disease (EOAD, <65 years) and Frontotemporal Dementia (FTD) are common forms of early-onset dementia. Therefore, there is a need to establish accurate diagnosis and to obtain markers for disease tracking. We combined supervised and unsupervised machine learning (ML) to discriminate between EOAD and FTD patients. METHODS: We included 3T-T1 MRI of 203 subjects under 65 years old: 66 healthy controls (CTR, age: 55.0 +/- 8.4 years), 85 EOAD patients (age: 57.3 +/- 6.1 years) and 52 FTD patients (age: 57.9 +/- 4.8 years). We obtained subcortical gray matter volumes and cortical thickness (CTh) regional measures using FreeSurfer. For ML, we performed a Principal Component Analysis (PCA) of all volumes and Cth values. Then, the first principal component (PC) was introduced into a Support Vector Machine (SVM). Overall performance was assessed using k-fold cross-validation. RESULTS: Our algorithm had an accuracy of 87.2 +/- 14.2 % in the CTR vs EOAD classification, 80.8 +/- 20.4 % for CTR vs FTD, 66.5 +/- 12.9 % for EOAD vs FTD and 65.2 +/- 10.6 % when discriminating the 3 groups. We used the weights of the first PC to create disease-specific patterns. CONCLUSION: By using a single feature that combines information from CTh and subcortical volumes, our algorithm classifies CTR, EOAD and FTD with good accuracy. We suggest that this approach can be used as a feature reduction strategy in ML algorithms while providing interpretable atrophy patterns.
引用
收藏
页数:8
相关论文
共 32 条
  • [1] Combined Structural MR and Diffusion Tensor Imaging Classify the Presence of Alzheimer's Disease With the Same Performance as MR Combined With Amyloid Positron Emission Tomography: A Data Integration Approach
    Agostinho, Daniel
    Caramelo, Francisco
    Moreira, Ana Paula
    Santana, Isabel
    Abrunhosa, Antero
    Castelo-Branco, Miguel
    [J]. FRONTIERS IN NEUROSCIENCE, 2022, 15
  • [2] The diagnosis of mild cognitive impairment due to Alzheimer's disease: Recommendations from the National Institute on Aging-Alzheimer's Association workgroups on diagnostic guidelines for Alzheimer's disease
    Albert, Marilyn S.
    DeKosky, Steven T.
    Dickson, Dennis
    Dubois, Bruno
    Feldman, Howard H.
    Fox, Nick C.
    Gamst, Anthony
    Holtzman, David M.
    Jagust, William J.
    Petersen, Ronald C.
    Snyder, Peter J.
    Carrillo, Maria C.
    Thies, Bill
    Phelps, Creighton H.
    [J]. ALZHEIMERS & DEMENTIA, 2011, 7 (03) : 270 - 279
  • [3] Clinical features and APOE genotype of pathologically proven early-onset Alzheimer disease
    Balasa, M.
    Gelpi, E.
    Antonell, A.
    Rey, M. J.
    Sanchez-Valle, R.
    Molinuevo, J. L.
    Llado, A.
    [J]. NEUROLOGY, 2011, 76 (20) : 1720 - 1725
  • [4] Statistical analysis of longitudinal neuroimage data with Linear Mixed Effects models
    Bernal-Rusiel, Jorge L.
    Greve, Douglas N.
    Reuter, Martin
    Fischl, Bruce
    Sabuncu, Mert R.
    [J]. NEUROIMAGE, 2013, 66 : 249 - 260
  • [5] Differential early subcortical involvement in genetic FTD within the GENFI cohort
    Bocchetta, Martina
    Todd, Emily G.
    Peakman, Georgia
    Cash, David M.
    Convery, Rhian S.
    Russell, Lucy L.
    Thomas, David L.
    Iglesias, Juan Eugenio
    van Swieten, John C.
    Jiskoot, Lize C.
    Seelaar, Harro
    Borroni, Barbara
    Galimberti, Daniela
    Sanchez-Valle, Raquel
    Laforce, Robert
    Moreno, Fermin
    Synofzik, Matthis
    Graff, Caroline
    Masellis, Mario
    Tartaglia, Maria Carmela
    Rowe, James B.
    Vandenberghe, Rik
    Finger, Elizabeth
    Tagliavini, Fabrizio
    de Mendonca, Alexandre
    Santana, Isabel
    Butler, Chris R.
    Ducharme, Simon
    Gerhard, Alexander
    Danek, Adrian
    Levin, Johannes
    Otto, Markus
    Sorbi, Sandro
    Le Ber, Isabelle
    Pasquier, Florence
    Rohrer, Jonathan D.
    [J]. NEUROIMAGE-CLINICAL, 2021, 30
  • [6] Multiparametric computer-aided differential diagnosis of Alzheimer's disease and frontotemporal dementia using structural and advanced MRI
    Bron, Esther E.
    Smits, Marion
    Papma, Janne M.
    Steketee, Rebecca M. E.
    Meijboom, Rozanna
    de Groot, Marius
    van Swieten, John C.
    Niessen, Wiro J.
    Klein, Stefan
    [J]. EUROPEAN RADIOLOGY, 2017, 27 (08) : 3372 - 3382
  • [7] Diagnostic Classification of Arterial Spin Labeling and Structural MRI in Presenile Early Stage Dementia
    Bron, Esther E.
    Steketee, Rebecca M. E.
    Houston, Gavin C.
    Oliver, Ruth A.
    Achterberg, Hakim C.
    Loog, Marco
    van Swieten, John C.
    Hammers, Alexander
    Niessen, Wiro J.
    Smits, Marion
    Klein, Stefan
    [J]. HUMAN BRAIN MAPPING, 2014, 35 (09) : 4916 - 4931
  • [8] Multiparametric MRI to distinguish early onset Alzheimer's disease and behavioural variant of frontotemporal dementia
    Canu, Elisa
    Agosta, Federica
    Mandic-Stojmenovic, Gorana
    Stojkovic, Tanja
    Stefanova, Elka
    Inuggi, Alberto
    Imperiale, Francesca
    Copetti, Massimiliano
    Kostic, Vladimir S.
    Filippi, Massimo
    [J]. NEUROIMAGE-CLINICAL, 2017, 15 : 428 - 438
  • [9] Radiological classification of dementia from anatomical MRI assisted by machine learning-derived maps
    Chague, Pierre
    Marro, Beatrice
    Fadili, Sarah
    Houot, Marion
    Morin, Alexandre
    Samper-Gonzalez, Jorge
    Beunon, Paul
    Arrive, Lionel
    Dormont, Didier
    Dubois, Bruno
    Teichmann, Marc
    Epelbaum, Stephane
    Colliot, Olivier
    [J]. JOURNAL OF NEURORADIOLOGY, 2021, 48 (06) : 412 - 418
  • [10] Longitudinal brain atrophy and CSF biomarkers in early-onset Alzheimer's disease
    Contador, Jose
    Perez-Millan, Agnes
    Tort-Merino, Adria
    Balasa, Mircea
    Falgas, Neus
    Olives, Jaume
    Castellvi, Magdalena
    Borrego-Ecija, Sergi
    Bosch, Beatriz
    Fernandez-Villullas, Guadalupe
    Ramos-Campoy, Oscar
    Antonell, Anna
    Bargallo, Nuria
    Sanchez-Valle, Raquel
    Sala-Llonch, Roser
    Llado, Albert
    [J]. NEUROIMAGE-CLINICAL, 2021, 32