Hybrid microfluidic fuel cell based on Laccase/C and AuAg/C electrodes

被引:26
作者
Lopez-Gonzalez, B. [1 ]
Dector, A. [2 ]
Cuevas-Muniz, F. M. [2 ]
Arjona, N. [2 ]
Cruz-Madrid, C. [3 ]
Arana-Cuenca, A. [3 ]
Guerra-Balcazar, M. [4 ]
Arriaga, L. G. [2 ]
Ledesma-Garcia, J. [4 ]
机构
[1] Univ Autonoma Queretaro, Fac Quim, Div Invest & Posgrad, Queretaro 76010, Mexico
[2] Ctr Invest & Desarrollo Tecnol & Electroquim, Pedro Escobedo 76703, Mexico
[3] Univ Politecn Pachuca, Zempoala 43380, Mexico
[4] Univ Autonoma Queretaro, Fac Ingn, Div Invest & Posgrad, Queretaro 76010, Mexico
关键词
Laccase immobilisation; Microfluidic fuel-cell; Enzymatic extracts; Selective materials; BIOFUEL CELL; CARBON NANOTUBES; GLUCOSE; DELIGNIFICATION; OXIDATION; ALKALINE; ENZYMES;
D O I
10.1016/j.bios.2014.06.054
中图分类号
Q6 [生物物理学];
学科分类号
071011 ;
摘要
A hybrid glucose microfluidic fuel cell composed of an enzymatic cathode (Laccase/ABTS/C) and an inorganic anode (AuAg/C) was developed and tested. The enzymatic cathode was prepared by adsorption of 2,2'-Azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) and Laccase on Vulcan XC-72, which act as a redox mediator, enzymatic catalyst and support, respectively. The Laccase/ABTS/C composite was characterised by Fourier Transform Infrared (FTIR) Spectroscopy, streaming current measurements (Zeta potential) and cyclic voltammetry. The AuAg/C anode catalyst was characterised by Transmission electron microscopy (TEM) and cyclic voltammetry. The hybrid microfluidic fuel cell exhibited excellent performance with a maximum power density value (i.e., 0.45 mW cm(-2)) that is the highest reported to date. The cell also exhibited acceptable stability over the course of several days. In addition, a Mexican endemic Laccase was used as the biocathode electrode and evaluated in the hybrid microfluidic fuel cell generating 0.5 mW cm(-2) of maximum power density. (C) 2014 Elsevier B.V. All rights reserved.
引用
收藏
页码:221 / 226
页数:6
相关论文
共 33 条
[1]   Delignification of Pinus radiata kraft pulp by treatment with a yeast genetically modified to produce laccases [J].
Arana-Cuenca, A. ;
Tellez-Jurado, A. ;
Yaguee, S. ;
Ferminan, E. ;
Carbajo, J. M. ;
Dominguez, A. ;
Gonzalez, T. ;
Villar, J. C. ;
Gonzalez, A. E. .
FOREST SYSTEMS, 2010, 19 (02) :234-240
[2]  
BRADFORD MM, 1976, ANAL BIOCHEM, V72, P248, DOI 10.1016/0003-2697(76)90527-3
[3]  
Brena B, 2013, METHODS MOL BIOL, V1051, P15, DOI 10.1007/978-1-62703-550-7_2
[4]   Biofuel cells and their development [J].
Bullen, RA ;
Arnot, TC ;
Lakeman, JB ;
Walsh, FC .
BIOSENSORS & BIOELECTRONICS, 2006, 21 (11) :2015-2045
[5]   Guideline for management of postmeal glucose [J].
Ceriello, Antonio ;
Colagiuri, Stephen ;
Gerich, John ;
Tuomilehto, Jaakko .
NUTRITION METABOLISM AND CARDIOVASCULAR DISEASES, 2008, 18 (04) :S17-S33
[6]   Membraneless laminar flow-based micro fuel cells operating in alkaline, acidic, and acidic/alkaline media [J].
Choban, ER ;
Spendelow, JS ;
Gancs, L ;
Wieckowski, A ;
Kenis, PJA .
ELECTROCHIMICA ACTA, 2005, 50 (27) :5390-5398
[7]   A hybrid biofuel cell based on electrooxidation of glucose using ultra-small silicon nanoparticles [J].
Choi, Yongki ;
Wang, Gang ;
Nayfeh, Munir H. ;
Yau, Siu-Tung .
BIOSENSORS & BIOELECTRONICS, 2009, 24 (10) :3103-3107
[8]   Screening of supports and inducers for laccase production by Trametes versicolor in semi-solid-state conditions [J].
Couto, SR ;
Gundin, M ;
Lorenzo, M ;
Sanromán, MN .
PROCESS BIOCHEMISTRY, 2002, 38 (02) :249-255
[9]   Performance of Au and AuAg nanoparticles supported on Vulcan in a glucose laminar membraneless microfuel cell [J].
Cuevas-Muniz, F. M. ;
Guerra-Balcazar, M. ;
Castaneda, F. ;
Ledesma-Garcia, J. ;
Arriaga, L. G. .
JOURNAL OF POWER SOURCES, 2011, 196 (14) :5853-5857
[10]   Towards a compact SU-8 micro-direct methanol fuel cell [J].
Esquivel, J. P. ;
Senn, T. ;
Hernandez-Fernandez, P. ;
Santander, J. ;
Loergen, M. ;
Rojas, S. ;
Loechel, B. ;
Cane, C. ;
Sabate, N. .
JOURNAL OF POWER SOURCES, 2010, 195 (24) :8110-8115