Eigenfunction Martingale Estimators for Interacting Particle Systems and Their Mean Field Limit

被引:8
作者
Pavliotis, Grigorios A. [1 ]
Zanoni, Andrea [2 ]
机构
[1] Imperial Coll London, Dept Math, London SW7 2AZ, England
[2] Ecole Polytech Fed Lausanne, Inst Math, CH-1015 Lausanne, Switzerland
基金
瑞士国家科学基金会; 英国工程与自然科学研究理事会;
关键词
interacting particle systems; exchangeability; mean field limit; inference; Fokker-Planck operator; eigenvalue problem; martingale estimators; SELF-STABILIZING PROCESSES; PARAMETER-ESTIMATION; LIKELIHOOD THEORY; DYNAMICS; PROPAGATION; CONVERGENCE;
D O I
10.1137/21M1464348
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study the problem of parameter estimation for large exchangeable interacting particle systems when a sample of discrete observations from a single particle is known. We propose a novel method based on martingale estimating functions constructed by employing the eigenvalues and eigenfunctions of the generator of the mean field limit, where the law of the process is replaced by the (unique) invariant measure of the mean field dynamics. We then prove that our estimator is asymptotically unbiased and asymptotically normal when the number of observations and the number of particles tend to infinity, and we provide a rate of convergence toward the exact value of the parameters. Finally, we present several numerical experiments which show the accuracy of our estimator and corroborate our theoretical findings, even in the case that the mean field dynamics exhibit more than one steady state.
引用
收藏
页码:2338 / 2370
页数:33
相关论文
共 44 条
[21]   Noisy bounded confidence models for opinion dynamics: the effect of boundary conditions on phase transitions [J].
Goddard, B. D. ;
Gooding, B. ;
Short, H. ;
Pavliotis, G. A. .
IMA JOURNAL OF APPLIED MATHEMATICS, 2022, 87 (01) :80-110
[22]   On the Dynamics of Large Particle Systems in the Mean Field Limit [J].
Golse, Francois .
MACROSCOPIC AND LARGE SCALE PHENOMENA: COARSE GRAINING, MEAN FIELD LIMITS AND ERGODICITY, 2016, 3 :1-144
[23]   Mean Field Limits for Interacting Diffusions in a Two-Scale Potential [J].
Gomes, S. N. ;
Pavliotis, G. A. .
JOURNAL OF NONLINEAR SCIENCE, 2018, 28 (03) :905-941
[24]   PARAMETER ESTIMATION FOR MACROSCOPIC PEDESTRIAN DYNAMICS MODELS FROM MICROSCOPIC DATA [J].
Gomes, Susana N. ;
Stuart, Andrew M. ;
Wolfram, Marie-Therese .
SIAM JOURNAL ON APPLIED MATHEMATICS, 2019, 79 (04) :1475-1500
[25]   Spectral methods for identifying scalar diffusions [J].
Hansen, LP ;
Scheinkman, JA ;
Touzi, N .
JOURNAL OF ECONOMETRICS, 1998, 86 (01) :1-32
[26]   MAXIMUM-LIKELIHOOD THEORY FOR LARGE INTERACTING SYSTEMS [J].
KASONGA, RA .
SIAM JOURNAL ON APPLIED MATHEMATICS, 1990, 50 (03) :865-875
[27]   Estimating equations based on eigenfunctions for a discretely observed diffusion process [J].
Kessler, M ;
Sorensen, M .
BERNOULLI, 1999, 5 (02) :299-314
[28]  
LANG S., 1993, GRADUATE TEXTS MATH, V142, DOI DOI 10.1007/978-1-4612-0897-6
[29]  
Liu MQ, 2020, Arxiv, DOI arXiv:2004.09580
[30]   Particle methods for multi-group pedestrian flow [J].
Mahato, N. K. ;
Klar, A. ;
Tiwari, S. .
APPLIED MATHEMATICAL MODELLING, 2018, 53 :447-461