Epileptic seizure identification from electroencephalography signal using DE-RBFNs ensemble

被引:16
作者
Dehuri, Satchidanada [1 ]
Jagadev, Alok Kumar [2 ]
Cho, Sung-Bae [3 ]
机构
[1] Ajou Univ, Dept Syst Engn, San 5, Suwon 443749, South Korea
[2] SOA Univ, Dept Comp Sci & Engn, Bhubaneswar, Orissa, India
[3] Yonsei Univ, Soft Comp Lab, Dept Comp Sci, Seoul 120749, South Korea
来源
4TH INTERNATIONAL CONFERENCE ON COMPUTATIONAL SYSTEMS-BIOLOGY AND BIOINFORMATICS (CSBIO2013) | 2013年 / 23卷
基金
新加坡国家研究基金会;
关键词
EEG; classification; radial basis function neural networks; differential evolution; bagging; ARTIFICIAL NEURAL-NETWORK; EEG; CLASSIFICATION; REGRESSION; MODEL;
D O I
10.1016/j.procs.2013.10.012
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
In this paper, an ensemble of radial basis function neural networks (RBFNs) optimized by differential evolution (DE) (DERBFNs) is presented for identification of epileptic seizure by analyzing the electroencephalography (EEG) signal. The ensemble is based on the bagging approach and the base learner is DE-RBFNs. The EEGs are decomposed with wavelet transform into different sub-bands and some statistical information is extracted from the wavelet coefficients to supply as the input to ensemble of DE-RBFNs. A benchmark publicly available dataset is used to evaluate the proposed method. The classification results confirm that the proposed ensemble of DE-RBFNs has greater potentiality to identify the epileptic disorders. (C) 2013 The Authors. Published by Elsevier B.V.
引用
收藏
页码:84 / 95
页数:12
相关论文
共 39 条
  • [1] Analysis of EEG records in an epileptic patient using wavelet transform
    Adeli, H
    Zhou, Z
    Dadmehr, N
    [J]. JOURNAL OF NEUROSCIENCE METHODS, 2003, 123 (01) : 69 - 87
  • [2] Automatic seizure detection in EEG using logistic regression and artificial neural network
    Alkan, A
    Koklukaya, E
    Subasi, A
    [J]. JOURNAL OF NEUROSCIENCE METHODS, 2005, 148 (02) : 167 - 176
  • [3] Indications of nonlinear deterministic and finite-dimensional structures in time series of brain electrical activity: Dependence on recording region and brain state
    Andrzejak, RG
    Lehnertz, K
    Mormann, F
    Rieke, C
    David, P
    Elger, CE
    [J]. PHYSICAL REVIEW E, 2001, 64 (06): : 8 - 061907
  • [4] [Anonymous], PATTERN RECOGNITION
  • [5] A radial basis function neural network model for classification of epilepsy using EEG signals
    Aslan, Kezban
    Bozdemir, Hacer
    Sahin, Cenk
    Ogulata, Seyfettin Noyan
    Erol, Rizvan
    [J]. JOURNAL OF MEDICAL SYSTEMS, 2008, 32 (05) : 403 - 408
  • [6] EEG background activity described by a large computerized database
    Aurlien, H
    Gjerde, IO
    Aarseth, JH
    Eldoen, G
    Karlsen, B
    Skeidsvoll, H
    Gilhus, NE
    [J]. CLINICAL NEUROPHYSIOLOGY, 2004, 115 (03) : 665 - 673
  • [7] Breiman L, 1996, MACH LEARN, V24, P123, DOI 10.1023/A:1018054314350
  • [8] Broomhead D. S., 1988, Complex Systems, V2, P321
  • [9] Differential Evolution: A Survey of the State-of-the-Art
    Das, Swagatam
    Suganthan, Ponnuthurai Nagaratnam
    [J]. IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, 2011, 15 (01) : 4 - 31
  • [10] Dash CSK, 2012, INT J APPL EVOLUTION, V4, P56