Estimates for the norms of monotone operators on weighted Orlicz-Lorentz classes

被引:2
作者
Goldman, M. L. [1 ]
机构
[1] Peoples Friendship Univ, Ul Miklukho Maklaya 6, Moscow 117198, Russia
基金
俄罗斯基础研究基金会;
关键词
SPACES;
D O I
10.1134/S1064562416060065
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A monotone operator P mapping the Orlicz-Lorentz class to an ideal space is considered. The Orlicz-Lorentz class is the cone of measurable functions on R (+) =(0, a) whose decreasing rearrangements with respect to the Lebesgue measure on R (+) belong to the weighted Orlicz space L (I broken vertical bar,nu). Reduction theorems are proved, which make it possible to reduce estimates of the norm of the operator P: I >(I broken vertical bar,nu) -> Y to those of the norm of its restriction to the cone of nonnegative step functions in L (I broken vertical bar,nu). The application of these results to the identity operator from I >(I broken vertical bar,nu) to the weighted Lebesgue space Y = L (1)(R (+); g) gives exact descriptions of associated norms for I >(I broken vertical bar,nu).
引用
收藏
页码:627 / 631
页数:5
相关论文
共 13 条
[1]  
Bennett C., 1988, Interpolation of operators
[2]  
Goldman M., 1998, FUNCTION SPACES DIFF, V1, P179
[3]   On the principle of duality in Lorentz spaces [J].
GolDman, ML ;
Heinig, HP ;
Stepanov, VD .
CANADIAN JOURNAL OF MATHEMATICS-JOURNAL CANADIEN DE MATHEMATIQUES, 1996, 48 (05) :959-979
[4]   Hardy operators of monotone functions and sequences in Orlicz spaces [J].
Heinig, HP ;
Kufner, A .
JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 1996, 53 :256-270
[5]   On the dual of Orlicz-Lorentz space [J].
Hudzik, H ;
Kaminska, A ;
Mastylo, M .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2002, 130 (06) :1645-1654
[6]   Order convexity and concavity of Lorentz spaces Λp,w, 0 <p<∞ [J].
Kaminska, A ;
Maligranda, L .
STUDIA MATHEMATICA, 2004, 160 (03) :267-286
[7]   New formulas for decreasing rearrangements and a class of Orlicz-Lorentz spaces [J].
Kaminska, Anna ;
Raynaud, Yves .
REVISTA MATEMATICA COMPLUTENSE, 2014, 27 (02) :587-621
[8]  
Krasnosel'skii M.A., 1958, Convex functions and Orlics spaces
[9]  
Krein S. G., 1978, Interpolation of linear operators
[10]  
Maligranda L., 1989, ORLICZ SPACES INTERP