CONVEX ANCIENT SOLUTIONS OF THE MEAN CURVATURE FLOW

被引:0
|
作者
Huisken, Gerhard [1 ]
Sinestrari, Carlo [2 ]
机构
[1] Univ Tubingen, Fachbereich Math, D-72076 Tubingen, Germany
[2] Univ Roma Tor Vergata, Dipartimento Matemat, I-00133 Rome, Italy
关键词
RICCI FLOW; HYPERSURFACES; SINGULARITIES; CLASSIFICATION;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We study solutions of the mean curvature flow which are defined for all negative times, usually called ancient solutions. We give various conditions ensuring that a closed convex ancient solution is a shrinking sphere. Examples of such conditions are: a uniform pinching condition on the curvatures, a suitable growth bound on the diameter, or a reverse isoperimetric inequality. We also study the behaviour of uniformly k-convex solutions, and consider generalizations to ancient solutions immersed in a sphere.
引用
收藏
页码:267 / 287
页数:21
相关论文
共 50 条
  • [1] UNIQUE ASYMPTOTICS OF ANCIENT CONVEX MEAN CURVATURE FLOW SOLUTIONS
    Angenent, Sigurd
    Daskalopoulos, Panagiota
    Sesum, Natasa
    JOURNAL OF DIFFERENTIAL GEOMETRY, 2019, 111 (03) : 381 - 455
  • [2] Uniqueness of convex ancient solutions to mean curvature flow in higher dimensions
    Brendle, Simon
    Choi, Kyeongsu
    GEOMETRY & TOPOLOGY, 2021, 25 (05) : 2195 - 2234
  • [3] Convex solutions to the mean curvature flow
    Wang, Xu-Jia
    ANNALS OF MATHEMATICS, 2011, 173 (03) : 1185 - 1239
  • [4] Ancient solutions of the mean curvature flow
    Haslhofer, Robert
    Hershkovits, Or
    COMMUNICATIONS IN ANALYSIS AND GEOMETRY, 2016, 24 (03) : 593 - 604
  • [5] Uniqueness of two-convex closed ancient solutions to the mean curvature flow
    Angenent, Sigurd
    Daskalopoulos, Panagiota
    Sesum, Natasa
    ANNALS OF MATHEMATICS, 2020, 192 (02) : 353 - 436
  • [6] Uniqueness of convex ancient solutions to mean curvature flow in R3
    Brendle, Simon
    Choi, Kyeongsu
    INVENTIONES MATHEMATICAE, 2019, 217 (01) : 35 - 76
  • [7] Collapsing and noncollapsing in convex ancient mean curvature flow
    Bourni, Theodora
    Langford, Mat
    Lynch, Stephen
    JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 2023, 2023 (801): : 273 - 305
  • [8] Ancient solutions in Lagrangian mean curvature flow
    Lambert, Ben
    Lotay, Jason D.
    Schulze, Felix
    ANNALI DELLA SCUOLA NORMALE SUPERIORE DI PISA-CLASSE DI SCIENZE, 2021, 22 (03) : 1169 - 1205
  • [9] COLLAPSING ANCIENT SOLUTIONS OF MEAN CURVATURE FLOW
    Bourni, Theodora
    Langford, Mat
    Tinaglia, Giuseppe
    JOURNAL OF DIFFERENTIAL GEOMETRY, 2021, 119 (02) : 187 - 219
  • [10] CONVEX SOLUTIONS TO THE POWER-OF-MEAN CURVATURE FLOW
    Chen, Shibing
    PACIFIC JOURNAL OF MATHEMATICS, 2015, 276 (01) : 117 - 141