Entropy Interpretation of Hadamard Type Fractional Operators: Fractional Cumulative Entropy

被引:7
作者
Tarasov, Vasily E. [1 ,2 ]
机构
[1] Lomonosov Moscow State Univ, Skobeltsyn Inst Nucl Phys, Moscow 119991, Russia
[2] Natl Res Univ, Moscow Aviat Inst, Dept Phys, Moscow 125993, Russia
关键词
fractional calculus; fractional integrals; Hadamard-type fractional pperator; entropy; cummulative entropy; fractional entropy; DIFFERENTIAL-EQUATIONS; PROBABILITY INTERPRETATION; GEOMETRICAL INTERPRETATION; PHYSICAL INTERPRETATION; ANOMALOUS DIFFUSION; DERIVATIVES; INTEGRATION; CALCULUS; RELAXATION; DYNAMICS;
D O I
10.3390/e24121852
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Interpretations of Hadamard-type fractional integral and differential operators are proposed. The Hadamard-type fractional integrals of function with respect to another function are interpreted as an generalization of standard entropy, fractional entropies and cumulative entropies. A family of fractional cumulative entropies is proposed by using the Hadamard-type fractional operators.
引用
收藏
页数:18
相关论文
共 99 条
[1]  
Ahmad B., 2017, Hadamard-Type Fractional Differential Equations, Inclusions and Inequalities
[2]  
[Anonymous], 1957, Mathematical Foundations of Information Theory
[3]  
[Anonymous], Bell System Technical Journal
[4]   On the dynamic cumulative residual entropy [J].
Asadi, Majid ;
Zohrevand, Younes .
JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 2007, 137 (06) :1931-1941
[5]  
Borovkov A.A., 2013, PROBABILITY THEORY U, V5th
[6]   Fractional integro-differential calculus and its control-theoretical applications. I. Mathematical fundamentals and the problem of interpretation [J].
Butkovskii, A. G. ;
Postnov, S. S. ;
Postnova, E. A. .
AUTOMATION AND REMOTE CONTROL, 2013, 74 (04) :543-574
[7]   Mellin transform analysis and integration by parts for Hadamard-type fractional integrals [J].
Butzer, PL ;
Kilbas, AA ;
Trujillo, JJ .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2002, 270 (01) :1-15
[8]   Fractional calculus in the Mellin setting and Hadamard-type fractional integrals [J].
Butzer, PL ;
Kilbas, AA ;
Trujillo, JJ .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2002, 269 (01) :1-27
[9]   Compositions of Hadamard-type fractional integration operators and the semigroup property [J].
Butzer, PL ;
Kilbas, AA ;
Trujillo, JJ .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2002, 269 (02) :387-400
[10]  
Chambadal P., 1963, EVOLUTION APPL CONCE