Strong convergence of the Halpern subgradient extragradient method for solving variational inequalities in Banach spaces

被引:8
作者
Liu, Ying [1 ]
机构
[1] Hebei Univ, Coll Math & Informat Sci, Baoding 071002, Hebei, Peoples R China
来源
JOURNAL OF NONLINEAR SCIENCES AND APPLICATIONS | 2017年 / 10卷 / 02期
基金
中国国家自然科学基金;
关键词
Subgradient extragradient method; Halpern method; generalized projection operator; monotone mapping; variational inequality; relatively nonexpansive mapping; RELATIVELY NONEXPANSIVE-MAPPINGS; MONOTONE MAPPINGS; WEAK-CONVERGENCE; HILBERT-SPACE; THEOREMS;
D O I
10.22436/jnsa.010.02.06
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we combine the subgradient extragradient method with the Halpern method for finding a solution of a variational inequality involving a monotone Lipschitz mapping in Banach spaces. By using the generalized projection operator and the Lyapunov functional introduced by Alber, we prove a strong convergence theorem. We also consider the problem of finding a common element of the set of solutions of a variational inequality problem and the set of fixed points of a relatively nonexpansive mapping. Our results improve some well-known results in Banach spaces or Hilbert spaces. (C) 2017 all rights reserved.
引用
收藏
页码:395 / 409
页数:15
相关论文
共 23 条
[1]  
Alber Y., 2001, Analysis, V21, P17, DOI DOI 10.1524/ANLY.2001.21.1.17
[2]  
Alber Y. I., 1994, PANAMERICAN MATH J, V4, P39
[3]   SHARP UNIFORM CONVEXITY AND SMOOTHNESS INEQUALITIES FOR TRACE NORMS [J].
BALL, K ;
CARLEN, EA ;
LIEB, EH .
INVENTIONES MATHEMATICAE, 1994, 115 (03) :463-482
[4]  
Buong N., 2010, APPL MATH COMPUT, V217, P322, DOI DOI 10.1016/J.AMC.2010.05.064
[5]   Strong convergence theorem by a hybrid extragradient-like approximation method for variational inequalities and fixed point problems [J].
Ceng, Lu-Chuan ;
Hadjisavvas, Nicolas ;
Wong, Ngai-Ching .
JOURNAL OF GLOBAL OPTIMIZATION, 2010, 46 (04) :635-646
[6]   The Subgradient Extragradient Method for Solving Variational Inequalities in Hilbert Space [J].
Censor, Y. ;
Gibali, A. ;
Reich, S. .
JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 2011, 148 (02) :318-335
[7]   Strong convergence of subgradient extragradient methods for the variational inequality problem in Hilbert space [J].
Censor, Yair ;
Gibali, Aviv ;
Reich, Simeon .
OPTIMIZATION METHODS & SOFTWARE, 2011, 26 (4-5) :827-845
[8]   Viscosity approximation methods for nonexpansive mappings and monotone mappings [J].
Chen, Junmin ;
Zhang, Lijuan ;
Fan, Tiegang .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2007, 334 (02) :1450-1461
[9]   FIXED POINTS OF NONEXPANDING MAPS [J].
HALPERN, B .
BULLETIN OF THE AMERICAN MATHEMATICAL SOCIETY, 1967, 73 (06) :957-&
[10]   Strong convergence theorems for nonexpansive mappings and inverse-strongly monotone mappings [J].
Iiduka, H ;
Takahashi, W .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2005, 61 (03) :341-350