Energy-dissipation splitting finite-difference time-domain method for Maxwell equations with perfectly matched layers

被引:30
作者
Hong, Jialin [1 ]
Ji, Lihai [2 ]
Kong, Linghua [2 ]
机构
[1] Chinese Acad Sci, Acad Math & Syst Sci, Inst Computat Math & Sci Engn Comp, LSEC, Beijing 100190, Peoples R China
[2] Jiangxi Normal Univ, Sch Math & Informat Sci, Nanchang 330022, Jiangxi, Peoples R China
关键词
Energy-dissipation; Splitting finite-difference time-domain scheme; Two-dimensional Maxwell equations; Perfectly matched layers; ABSORBING BOUNDARY-CONDITION; NUMERICAL DISPERSION; ABSORPTION;
D O I
10.1016/j.jcp.2014.03.025
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
In this paper, we develop a novel kind of energy-dissipation splitting finite-difference time-domain scheme for solving two-dimensional Maxwell equations with perfectly matched layers. The discrete energy dissipation law, convergence, dispersion relation, and stability are investigated for the scheme. Theoretical analysis shows that the scheme is unconditionally stable, and of second order accuracy both in time and space. Numerical experiments confirm the theoretical results. (C) 2014 Elsevier Inc. All rights reserved.
引用
收藏
页码:201 / 214
页数:14
相关论文
共 50 条
  • [41] Fourth-order finite-difference time-domain method based on error-controlling concepts
    Zygiridis, Theodoros T.
    INTERNATIONAL JOURNAL OF NUMERICAL MODELLING-ELECTRONIC NETWORKS DEVICES AND FIELDS, 2012, 25 (5-6) : 587 - 598
  • [42] Modal Analysis of Nonuniformly Dielectric Waveguide Using Semivectorially Compact Finite-Difference Time-Domain Method
    Hong-Xing Zheng
    Dao-Yin Yu
    International Journal of Infrared and Millimeter Waves, 2005, 26 : 725 - 738
  • [43] Perfectly matched layer-absorbing boundary condition for finite-element time-domain modeling of elastic wave equations
    Zhao Jian-Guo
    Shi Rui-Qi
    APPLIED GEOPHYSICS, 2013, 10 (03) : 323 - 336
  • [44] Perfectly matched layer-absorbing boundary condition for finite-element time-domain modeling of elastic wave equations
    Jian-Guo Zhao
    Rui-Qi Shi
    Applied Geophysics, 2013, 10 : 323 - 336
  • [45] A research on the electromagnetic properties of Plasma Photonic Crystal based on the Symplectic Finite-Difference Time-Domain method
    Gao, Ying-Jie
    Yang, Hong-Wei
    Wang, Guang-Bin
    OPTIK, 2016, 127 (04): : 1838 - 1841
  • [46] An efficient locally one-dimensional finite-difference time-domain method based on the conformal scheme
    Wei Xiao-Kun
    Shao Wei
    Shi Sheng-Bing
    Zhang Yong
    Wang Bing-Zhong
    CHINESE PHYSICS B, 2015, 24 (07)
  • [47] Modal analysis of nonuniformly dielectric waveguide using semivectorially compact finite-difference time-domain method
    Zheng, HX
    Yu, DY
    INTERNATIONAL JOURNAL OF INFRARED AND MILLIMETER WAVES, 2005, 26 (05): : 725 - 738
  • [48] Comparison of absorption simulation in semiconductor nanowire and nanocone arrays with the Fourier modal method, the finite element method, and the finite-difference time-domain method
    Anttu, Nicklas
    Mantynen, Henrik
    Sadi, Toufik
    Matikainen, Antti
    Turunen, Jari
    Lipsanen, Harri
    NANO EXPRESS, 2020, 1 (03):
  • [49] Decimation in Time and Space of Finite-Difference Time-Domain Schemes: Standard Isotropic Lossless Model
    Fontana, Federico
    Bozzo, Enrico
    Novello, Marco
    IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2015, 63 (20) : 5331 - 5341
  • [50] A finite-difference time-domain method for Lorentz dispersive media with reduced errors within arbitrary frequency bands
    Zygiridis, Theodoros T.
    Amanatiadis, Stamatios A.
    Papadopoulos, Aristeides D.
    Kantartzis, Nikolaos, V
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2023, 137 : 102 - 111