Energy-dissipation splitting finite-difference time-domain method for Maxwell equations with perfectly matched layers

被引:29
|
作者
Hong, Jialin [1 ]
Ji, Lihai [2 ]
Kong, Linghua [2 ]
机构
[1] Chinese Acad Sci, Acad Math & Syst Sci, Inst Computat Math & Sci Engn Comp, LSEC, Beijing 100190, Peoples R China
[2] Jiangxi Normal Univ, Sch Math & Informat Sci, Nanchang 330022, Jiangxi, Peoples R China
关键词
Energy-dissipation; Splitting finite-difference time-domain scheme; Two-dimensional Maxwell equations; Perfectly matched layers; ABSORBING BOUNDARY-CONDITION; NUMERICAL DISPERSION; ABSORPTION;
D O I
10.1016/j.jcp.2014.03.025
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
In this paper, we develop a novel kind of energy-dissipation splitting finite-difference time-domain scheme for solving two-dimensional Maxwell equations with perfectly matched layers. The discrete energy dissipation law, convergence, dispersion relation, and stability are investigated for the scheme. Theoretical analysis shows that the scheme is unconditionally stable, and of second order accuracy both in time and space. Numerical experiments confirm the theoretical results. (C) 2014 Elsevier Inc. All rights reserved.
引用
收藏
页码:201 / 214
页数:14
相关论文
共 50 条
  • [21] A new update algorithm in a finite-difference time-domain implementation of anisotropic perfectly matched layer
    G. Ögücü
    T. Ege
    Electrical Engineering, 2003, 85 : 109 - 111
  • [22] A new update algorithm in a finite-difference time-domain implementation of anisotropic perfectly matched layer
    Ögücü, G
    Ege, T
    ELECTRICAL ENGINEERING, 2003, 85 (02) : 109 - 111
  • [23] A spherical higher-order finite-difference time-domain algorithm with perfectly matched layer
    刘亚文
    陈亦望
    张品
    刘宗信
    Chinese Physics B, 2014, 23 (12) : 170 - 180
  • [24] Unified perfectly matched layer for finite-difference time-domain modeling of dispersive optical materials
    Udagedara, Indika
    Premaratne, Malin
    Rukhlenko, Ivan D.
    Hattori, Haroldo T.
    Agrawal, Govind P.
    OPTICS EXPRESS, 2009, 17 (23): : 21179 - 21190
  • [25] A spherical higher-order finite-difference time-domain algorithm with perfectly matched layer
    Liu Ya-Wen
    Chen Yi-Wang
    Zhang Pin
    Liu Zong-Xin
    CHINESE PHYSICS B, 2014, 23 (12)
  • [26] Optimum Loss Factor for a Perfectly Matched Layer in Finite-Difference Time-Domain Acoustic Simulation
    Mokhtari, Parham
    Takemoto, Hironori
    Nishimura, Ryouichi
    Kato, Hiroaki
    IEEE TRANSACTIONS ON AUDIO SPEECH AND LANGUAGE PROCESSING, 2010, 18 (05): : 1068 - 1071
  • [27] A staggered-grid finite-difference method with perfectly matched layers for poroelastic wave equations
    Zeng, YQ
    Liu, QH
    JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA, 2001, 109 (06): : 2571 - 2580
  • [28] Time-domain finite-difference and finite-element methods for Maxwell equations in complex media
    Teixeira, Fernando L.
    IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, 2008, 56 (08) : 2150 - 2166
  • [29] Solving the maxwell equations by the Chebyshev method: A one-step finite-difference time-domain algorithm
    De Raedt, H
    Michielsen, K
    Kole, JS
    Figge, MT
    IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, 2003, 51 (11) : 3155 - 3160
  • [30] An explicit fourth-order staggered finite-difference time-domain method for Maxwell's equations
    Xie, ZQ
    Chan, CH
    Zhang, B
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2002, 147 (01) : 75 - 98