Estimates for the extremal sections of complex lp-balls

被引:0
作者
Duc Nam Lai [1 ]
Huang, Qingzhong [2 ]
He, Binwu [1 ]
机构
[1] Shanghai Univ, Dept Math, Shanghai 200444, Peoples R China
[2] Jiaxing Univ, Coll Math Phys & Informat Engn, Jiaxing 314001, Peoples R China
来源
JOURNAL OF INEQUALITIES AND APPLICATIONS | 2014年
基金
中国国家自然科学基金;
关键词
complex isotropic constant; l(p)(C-n)-balls; complex slicing problem; BUSEMANN-PETTY PROBLEM; BODIES; CONSTANTS; TRANSFORM; VOLUME; CUBE;
D O I
10.1186/1029-242X-2014-235
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The problem of maximal hyperplane section of B-p(C-n) with p >= 1 is considered, which is the complex version of central hyperplane section problem of B-p(R-n). The relation between the complex slicing problem and the complex isotropic constant of a body is established, an upper bound estimate for the volume of complex central hyperplane sections of normalized complex l(p)(C-n)-balls that does not depend on n and p is shown, which extends results of Oleszkiewicz and Pelczynski, Koldobsky and Zymonopoulou, and Meyer and Pajor.
引用
收藏
页数:13
相关论文
共 30 条