Adaptive likelihood ratio approaches for the detection of space-time disease clusters

被引:2
|
作者
de Lima, Max Sousa [1 ]
Duczmal, Luiz Henrique [2 ]
机构
[1] Univ Fed Amazonas, Dept Stat, BR-69077000 Manaus, Amazonas, Brazil
[2] Univ Fed Minas Gerais, Dept Stat, BR-31270901 Belo Horizonte, MG, Brazil
关键词
Spatial analysis; Space-time clusters; Sequential analysis; Adaptive likelihood ratio; Simulation; SCAN STATISTICS; SURVEILLANCE;
D O I
10.1016/j.csda.2014.03.015
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
A methodology based on adaptive likelihood ratios (ALRs) for the detection of emerging disease clusters is presented. The martingale structure of the regular likelihood ratio is preserved by the ALR. The upper limit for the false alarm rate of the proposed method depends only on the quantity of evaluated cluster candidates. Thus Monte Carlo simulations are not required to validate the procedures' statistical significance, allowing the construction of a fast computational algorithm to detect clusters. The number of evaluated clusters is also significantly reduced, through the use of an adaptive approach to prune many unpromising clusters. This further increases the computational speed. Performance is evaluated through simulations to measure the average detection delay and the probability of correct cluster detection. We present applications for thyroid cancer in New Mexico and hanseniasis in children in the Brazilian Amazon. (C) 2014 Elsevier B.V. All rights reserved.
引用
收藏
页码:352 / 370
页数:19
相关论文
共 50 条
  • [21] Peste des Petits Ruminants risk factors and space-time clusters in Mymensingh, Bangladesh
    Rony, M. S.
    Rahman, A. K. M. A.
    Alam, M. M.
    Dhand, N.
    Ward, M. P.
    TRANSBOUNDARY AND EMERGING DISEASES, 2017, 64 (06) : 2042 - 2048
  • [22] A Space-Time Adaptive Processing Method Based on Sparse Reconstruction of Reverberation Interference
    Kou S.
    Feng X.
    Huang H.
    Bi Y.
    Xibei Gongye Daxue Xuebao/Journal of Northwestern Polytechnical University, 2020, 38 (06): : 1179 - 1187
  • [23] A Space-Time Permutation Scan Statistic for Evaluating County-Level Tickborne Disease Clusters in Indiana, 2009-2016
    Omodior, Oghenekaro
    HEALTH SECURITY, 2021, 19 (01) : 108 - 115
  • [24] Space-time cluster detection techniques for infectious diseases: A systematic review
    Lan, Yu
    Delmelle, Eric
    SPATIAL AND SPATIO-TEMPORAL EPIDEMIOLOGY, 2023, 44
  • [25] A Space-Time Conditional Intensity Model for Invasive Meningococcal Disease Occurrence
    Meyer, Sebastian
    Elias, Johannes
    Hoehle, Michael
    BIOMETRICS, 2012, 68 (02) : 607 - 616
  • [26] A hierarchical model for space-time surveillance data on meningococcal disease incidence
    Knorr-Held, L
    Richardson, S
    JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES C-APPLIED STATISTICS, 2003, 52 : 169 - 183
  • [27] Severe weather events and cryptosporidiosis in Aotearoa New Zealand: A case series of space-time clusters
    Grout, Leah
    Hales, Simon
    Baker, Michael G.
    French, Nigel
    Wilson, Nick
    EPIDEMIOLOGY & INFECTION, 2024, 152
  • [28] Modelling space-time HIV/AIDS dynamics: Applications to disease control
    Thomas, R
    SOCIAL SCIENCE & MEDICINE, 1996, 43 (03) : 353 - 366
  • [29] Risk clusters of COVID-19 transmission in northeastern Brazil: prospective space-time modelling
    Gomes, D. S.
    Andrade, L. A.
    Ribeiro, C. J. N.
    Peixoto, M. V. S.
    Lima, S. V. M. A.
    Duque, A. M.
    Cirilo, T. M.
    Goes, M. A. O.
    Lima, A. G. C. F.
    Santos, M. B.
    Araujo, K. C. G. M.
    Santos, A. D.
    EPIDEMIOLOGY AND INFECTION, 2020, 148
  • [30] Reduced-Dimension Space-Time Adaptive Processing for Sea Clutter Suppression in HFSSWR
    Zhang, Jiazhi
    Zhang, Xin
    Deng, Weibo
    Guo, Liang
    Yang, Qiang
    2019 IEEE RADAR CONFERENCE (RADARCONF), 2019,