Asymptotic multiplicities of graded families of ideals and linear series

被引:45
作者
Cutkosky, Steven Dale [1 ]
机构
[1] Univ Missouri, Dept Math, Columbia, MO 65211 USA
基金
美国国家科学基金会;
关键词
Multiplicity; Local ring; Graded linear series; Projective scheme; Volume of a line bundle; Kodaira-Iitaka dimension; OKOUNKOV BODIES; POWERS; GROWTH; APPROXIMATION; SEMIGROUPS; ALGEBRAS; DIVISORS; VOLUMES;
D O I
10.1016/j.aim.2014.07.004
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We find simple necessary and sufficient conditions on a local ring R of dimension d for the limit lim(n ->infinity) l(R)(R/I-n)/n(d) to exist whenever {I-n} is a graded family of m(R)-primary ideals, and give a number of applications. We also give simple necessary and sufficient conditions on projective schemes over a field k for asymptotic limits of the growth of all graded linear series of a fixed Kodaira-Iitaka dimension to exist. (C) 2014 Elsevier Inc. All rights reserved.
引用
收藏
页码:55 / 113
页数:59
相关论文
共 42 条
[1]  
[Anonymous], 1996, Publications Mathematiques
[2]  
[Anonymous], 2004, Classical Setting: Line Bundles and Linear Series
[3]   Okounkov bodies of filtered linear series [J].
Boucksom, Sebastien ;
Chen, Huayi .
COMPOSITIO MATHEMATICA, 2011, 147 (04) :1205-1229
[4]   DIFFERENTIABILITY OF VOLUMES OF DIVISORS AND A PROBLEM OF TEISSIER [J].
Boucksom, Sebastien ;
Favre, Charles ;
Jonsson, Mattias .
JOURNAL OF ALGEBRAIC GEOMETRY, 2009, 18 (02) :279-308
[5]   ASYMPTOTIC STABILITY OF ASS(M-INM) [J].
BRODMANN, M .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1979, 74 (01) :16-18
[6]  
Bruns W, 1993, COHEN MACAULAY RINGS
[7]  
Cutkosky S.D., 2014, J ALGEBRA A IN PRESS
[8]  
Cutkosky S.D., PREPRINT
[9]   ON A PROBLEM OF ZARISKI ON DIMENSIONS OF LINEAR-SYSTEMS [J].
CUTKOSKY, SD ;
SRINIVAS, V .
ANNALS OF MATHEMATICS, 1993, 137 (03) :531-559
[10]   Asymptotic behavior of the length of local cohomology [J].
Cutkosky, SD ;
Hà, HT ;
Srinivasan, H ;
Theodorescu, E .
CANADIAN JOURNAL OF MATHEMATICS-JOURNAL CANADIEN DE MATHEMATIQUES, 2005, 57 (06) :1178-1192