Tuning Cell Autophagy by Diversifying Carbon Nanotube Surface Chemistry

被引:108
作者
Wu, Ling [1 ]
Zhang, Yi [1 ]
Zhang, Chengke [1 ]
Cui, Xuehui [1 ]
Zhai, Shumei [1 ]
Liu, Yin [1 ]
Li, Changlong [1 ]
Zhu, Hao [2 ,3 ]
Qu, Guangbo [4 ]
Jiang, Guibin [4 ]
Yan, Bing [1 ]
机构
[1] Shandong Univ, Sch Chem & Chem Engn, Jinan 250100, Peoples R China
[2] Rutgers State Univ, Dept Chem, Camden, NJ 08102 USA
[3] Rutgers Ctr Computat & Integrat Biol, Camden, NJ 08102 USA
[4] Ecoenvironm Sci Res Ctr, State Key Lab Environm Chem & Ecotoxicol, Beijing 100085, Peoples R China
基金
中国国家自然科学基金;
关键词
carbon nanotube; surface modification; mTOR; autophagy; combinatorial library; signaling pathway; EARTH-OXIDE NANOCRYSTALS; SIGNALING PATHWAYS; QUANTUM DOTS; CANCER; MACROAUTOPHAGY; RECOGNITION; ACTIVATION; MECHANISMS; EXPRESSION; INDUCTION;
D O I
10.1021/nn500376w
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
The induction of autophagy by nanoparticles causes nanotoxicity, but appropriate modulation of autophagy by nanoparticles may have therapeutic potential. Multiwalled carbon nanotubes (MWCNTs) interact with cell membranes and membrane-associated molecules before and after internalization. These interactions alter cellular signaling and impact major cell functions such as cell cycle, apoptosis, and autophagy. In this work, we demonstrated that MWCNT-cell interactions can be modulated by varying densely distributed surface ligands on MWCNTs. Using a fluorescent autophagy-reporting cell line, we evaluated the autophagy induction capability of 81 surface-modified MWCNTs. We identified strong and moderate autophagy-inducing MWCNTs as well as those that did not induce autophagy. Variation of the surface ligand structure of strong autophagy nanoinducers led to the induction of different autophagy-activating signaling pathways, presumably through their different interactions with cell surface receptors.
引用
收藏
页码:2087 / 2099
页数:13
相关论文
共 47 条
[31]   Quantum dots for human mesenchymal stem cells labeling. A size-dependent autophagy activation [J].
Seleverstov, Oleksandr ;
Zabirnyk, Olga ;
Zscharnack, Matthias ;
Bulavina, Larysa ;
Nowicki, Marcin ;
Heinrich, Jan-Michael ;
Yezhelyev, Maksym ;
Emmrich, Frank ;
O'Regan, Ruth ;
Bader, Augustinus .
NANO LETTERS, 2006, 6 (12) :2826-2832
[32]   The C-elegans TGF-β dauer pathway regulates longevity via insulin signaling [J].
Shaw, Wendy M. ;
Luo, Shijing ;
Landis, Jessica ;
Ashraf, Jasmine ;
Murphy, Coleen T. .
CURRENT BIOLOGY, 2007, 17 (19) :1635-1645
[33]   Induction of autophagy in porcine kidney cells by quantum dots: A common cellular response to nanomaterials? [J].
Stern, Stephan T. ;
Zolnik, Banu S. ;
McLeland, Christopher B. ;
Clogston, Jeffery ;
Zheng, Jiwen ;
McNeil, Scott E. .
TOXICOLOGICAL SCIENCES, 2008, 106 (01) :140-152
[34]   Autophagy and lysosomal dysfunction as emerging mechanisms of nanomaterial toxicity [J].
Stern, Stephan T. ;
Adiseshaiah, Pavan P. ;
Crist, Rachael M. .
PARTICLE AND FIBRE TOXICOLOGY, 2012, 9
[35]   Nano-Combinatorial Chemistry Strategy for Nanotechnology Research [J].
Su, Gaoxing ;
Yan, Bing .
JOURNAL OF COMBINATORIAL CHEMISTRY, 2010, 12 (02) :215-221
[36]  
U.S. Food and Drug Administration (FDA) Department of Health and Human Services, 2012, GUID IND PYR END TES
[37]   Autophagy genes and ageing [J].
Vellai, T. .
CELL DEATH AND DIFFERENTIATION, 2009, 16 (01) :94-102
[38]   mTORC1 signaling: what we still don't know [J].
Wang, Xuemin ;
Proud, Christopher G. .
JOURNAL OF MOLECULAR CELL BIOLOGY, 2011, 3 (04) :206-220
[39]   Role of autophagy in suppression of inflammation and cancer [J].
White, Eileen ;
Karp, Cristina ;
Strohecker, Anne M. ;
Guo, Yanxiang ;
Mathew, Robin .
CURRENT OPINION IN CELL BIOLOGY, 2010, 22 (02) :212-217
[40]   Discovery of Small Molecules that Target Autophagy for Cancer Treatment [J].
Wu, L. ;
Yan, B. .
CURRENT MEDICINAL CHEMISTRY, 2011, 18 (12) :1866-1873