On solving stochastic differential equations

被引:2
作者
Ermakov, Sergej M. [1 ]
Pogosian, Anna A. [1 ]
机构
[1] St Petersburg Univ, Univ Pr 13, St Petersburg 198504, Russia
基金
俄罗斯科学基金会;
关键词
Monte Carlo methods; Markov chain Monte Carlo; stochastic differential equations;
D O I
10.1515/mcma-2019-2038
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
This paper proposes a new approach to solving Ito stochastic differential equations. It is based on the well-known Monte Carlo methods for solving integral equations (Neumann-Ulam scheme, Markov chain Monte Carlo). The estimates of the solution for a wide class of equations do not have a bias, which distinguishes them from estimates based on difference approximations (Euler, Milstein methods, etc.).
引用
收藏
页码:155 / 161
页数:7
相关论文
共 7 条
[1]  
Allen E., 2007, Modeling with Ito stochastic differential equations, V22
[2]  
Ermakov SM, 2009, MONTE CARLO METHOD C
[3]  
KUZNETSOV DF, 1998, SOME QUESTIONS THEOR
[4]   The truncated Euler-Maruyama method for stochastic differential equations [J].
Mao, Xuerong .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2015, 290 :370-384
[5]  
Mikhailov G.A., 2006, Numerical Statistical Modeling. Monte Carlo Methods
[6]   Stochastic simulation method for a 2D elasticity problem with random loads [J].
Sabelfeld, K. K. ;
Shalimova, I. A. ;
Levykin, A. I. .
PROBABILISTIC ENGINEERING MECHANICS, 2009, 24 (01) :2-15
[7]   Expansion of random boundary excitations for elliptic PDEs [J].
Sabelfeld, Karl .
MONTE CARLO METHODS AND APPLICATIONS, 2008, 13 (5-6) :405-453