CO2 Adsorption Thermodynamics over N-Substituted/Grafted Graphanes: A DFT Study

被引:34
作者
Xiao, Jing [1 ,2 ]
Sitamraju, Siddarth [3 ]
Janik, Michael J. [3 ,4 ]
机构
[1] S China Univ Technol, Educ Minist, Key Lab Enhanced Heat Transfer & Energy Conservat, Guangzhou 510640, Guangdong, Peoples R China
[2] S China Univ Technol, Sch Chem & Chem Engn, Guangzhou 510640, Guangdong, Peoples R China
[3] Penn State Univ, EMS Energy Inst, University Pk, PA 16802 USA
[4] Penn State Univ, Dept Chem Engn, University Pk, PA 16802 USA
基金
中国国家自然科学基金;
关键词
TOTAL-ENERGY CALCULATIONS; CARBON-DIOXIDE; FLUE-GAS; CAPTURE; AMINES; KINETICS; SORPTION;
D O I
10.1021/la4048837
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
This work examines CO2 adsorption over various N-substituted/grafted graphanes to identify the promotional effects of various N-functionalities have on the adsorption characteristics using DFT. CO2 adsorbs weakly on a graphane surface functionalized with a single, isolated substituted N- or grafted NH2-sites. The presence of coadsorbed H2O on the surface promotes CO2 adsorption on both N- and NH2-sites, with highly exothermic adsorption energies (similar to-50 kJ mol(-1)). Directly grafted -NH2 or -OH functional groups on C atoms adjacent to C atoms which have a -NH2 group grafted suffer from geometrical restrictions preventing dual stabilization of formed carbamate upon adsorption of CO2. CO2 adsorption can be greatly enhanced with the presence of a -OH group or second -NH2 group in the proximity of a -NH2 site on graphane, and only if a n(-CH2-) (n >= 1) linker is introduced between the -NH2 or -OH and graphane surface (adsorption energies of -58.8 or -43.1 kJ mol(-1) at n = 2). The adsorption mechanistics provided by DFT can be used to guide the atomic-level rational design of N-based graphane and carbon adsorbents for CO2 capture.
引用
收藏
页码:1837 / 1844
页数:8
相关论文
共 49 条
[1]   Understanding CO2 Capture in Amine-Functionalized MCM-41 by Molecular Simulation [J].
Builes, Santiago ;
Vega, Lourdes F. .
JOURNAL OF PHYSICAL CHEMISTRY C, 2012, 116 (04) :3017-3024
[2]   Carbon Dioxide Capture: Prospects for New Materials [J].
D'Alessandro, Deanna M. ;
Smit, Berend ;
Long, Jeffrey R. .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2010, 49 (35) :6058-6082
[3]   Gas adsorption on graphene doped with B, N, Al, and S: A theoretical study [J].
Dai, Jiayu ;
Yuan, Jianmin ;
Giannozzi, Paolo .
APPLIED PHYSICS LETTERS, 2009, 95 (23)
[4]   Microporous organic polymers for carbon dioxide capture [J].
Dawson, Robert ;
Stoeckel, Ev ;
Holst, James R. ;
Adams, Dave J. ;
Cooper, Andrew I. .
ENERGY & ENVIRONMENTAL SCIENCE, 2011, 4 (10) :4239-4245
[5]   Ab Initio Thermodynamic Study of the CO2 Capture Properties of Potassium Carbonate Sesquihydrate, K2CO3•1.5H2O [J].
Duan, Yuhua ;
Luebke, David R. ;
Pennline, Henry W. ;
Li, Bingyun ;
Janik, Michael J. ;
Halley, J. Woods .
JOURNAL OF PHYSICAL CHEMISTRY C, 2012, 116 (27) :14461-14470
[6]   CO2 capture properties of alkaline earth metal oxides and hydroxides: A combined density functional theory and lattice phonon dynamics study [J].
Duan, Yuhua ;
Sorescu, Dan C. .
JOURNAL OF CHEMICAL PHYSICS, 2010, 133 (07)
[7]   Control of Graphene's Properties by Reversible Hydrogenation: Evidence for Graphane [J].
Elias, D. C. ;
Nair, R. R. ;
Mohiuddin, T. M. G. ;
Morozov, S. V. ;
Blake, P. ;
Halsall, M. P. ;
Ferrari, A. C. ;
Boukhvalov, D. W. ;
Katsnelson, M. I. ;
Geim, A. K. ;
Novoselov, K. S. .
SCIENCE, 2009, 323 (5914) :610-613
[8]   Prediction of CO2 Adsorption Properties in Zeolites Using Force Fields Derived from Periodic Dispersion-Corrected DFT Calculations [J].
Fang, Hanjun ;
Kamakoti, Preeti ;
Zang, Ji ;
Cundy, Stephen ;
Paur, Charanjit ;
Ravikovitch, Peter I. ;
Sholl, David S. .
JOURNAL OF PHYSICAL CHEMISTRY C, 2012, 116 (19) :10692-10701
[9]   Kinetics of water vapor adsorption on activated carbon [J].
Foley, NJ ;
Thomas, KM ;
Forshaw, PL ;
Stanton, D ;
Norman, PR .
LANGMUIR, 1997, 13 (07) :2083-2089
[10]   Semiempirical GGA-type density functional constructed with a long-range dispersion correction [J].
Grimme, Stefan .
JOURNAL OF COMPUTATIONAL CHEMISTRY, 2006, 27 (15) :1787-1799