共 50 条
MAXIMUM CUTS IN GRAPHS WITHOUT WHEELS
被引:3
作者:
Lin, Jing
[1
,2
]
Zeng, Qinghou
[3
]
Chen, Fuyuan
[4
]
机构:
[1] Fuzhou Univ, Ctr Discrete Math, Fuzhou 350003, Fujian, Peoples R China
[2] Fujian Univ Technol, Coll Math & Phys, Fuzhou 350118, Fujian, Peoples R China
[3] Univ Sci & Technol China, Sch Math Sci, Hefei 230026, Anhui, Peoples R China
[4] Anhui Univ Finance & Econ, Inst Stat & Appl Math, Bengbu 233030, Anhui, Peoples R China
关键词:
maximum cut;
H-free;
wheel graph;
BIPARTITE SUBGRAPHS;
BOUNDS;
D O I:
10.1017/S0004972718001259
中图分类号:
O1 [数学];
学科分类号:
0701 ;
070101 ;
摘要:
For a graph G, let f(G) denote the maximum number of edges in a bipartite subgraph of G. Given a fixed graph H and a positive integer m, let f(m,H) denote the minimum possible cardinality of f(G), as G ranges over all graphs on m edges that contain no copy of H. Alon et al. ['Maximum cuts and judicious partitions in graphs without short cycles', J. Combin. Theory Ser. B 88 (2003), 329-346] conjectured that, for any fixed graph H, there exists an epsilon(H) > 0 such that f(m, H) >= m/2 + Omega(m(3/4+epsilon)). We show that, for any wheel graph W-2k of 2k spokes, there exists c(k) > 0 such that f(m, W-2k) >= m/2 + c(k)m(()(2k)(-1)/()(3k)(-1)) log m. In particular, we confirm the conjecture asymptotically for W-4 and give general lower bounds for W-2k(+1).
引用
收藏
页码:13 / 26
页数:14
相关论文
共 50 条