MAXIMUM CUTS IN GRAPHS WITHOUT WHEELS

被引:3
作者
Lin, Jing [1 ,2 ]
Zeng, Qinghou [3 ]
Chen, Fuyuan [4 ]
机构
[1] Fuzhou Univ, Ctr Discrete Math, Fuzhou 350003, Fujian, Peoples R China
[2] Fujian Univ Technol, Coll Math & Phys, Fuzhou 350118, Fujian, Peoples R China
[3] Univ Sci & Technol China, Sch Math Sci, Hefei 230026, Anhui, Peoples R China
[4] Anhui Univ Finance & Econ, Inst Stat & Appl Math, Bengbu 233030, Anhui, Peoples R China
关键词
maximum cut; H-free; wheel graph; BIPARTITE SUBGRAPHS; BOUNDS;
D O I
10.1017/S0004972718001259
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
For a graph G, let f(G) denote the maximum number of edges in a bipartite subgraph of G. Given a fixed graph H and a positive integer m, let f(m,H) denote the minimum possible cardinality of f(G), as G ranges over all graphs on m edges that contain no copy of H. Alon et al. ['Maximum cuts and judicious partitions in graphs without short cycles', J. Combin. Theory Ser. B 88 (2003), 329-346] conjectured that, for any fixed graph H, there exists an epsilon(H) > 0 such that f(m, H) >= m/2 + Omega(m(3/4+epsilon)). We show that, for any wheel graph W-2k of 2k spokes, there exists c(k) > 0 such that f(m, W-2k) >= m/2 + c(k)m(()(2k)(-1)/()(3k)(-1)) log m. In particular, we confirm the conjecture asymptotically for W-4 and give general lower bounds for W-2k(+1).
引用
收藏
页码:13 / 26
页数:14
相关论文
共 50 条
[21]   COMPUTATION OF TOPOLOGICAL INDICES OF INTERSECTION GRAPHS AND CONCENTRIC WHEELS GRAPH [J].
Alaeiyan, Mehdi ;
Mojarad, Rasoul ;
Asadpour, Jafar .
PROCEEDINGS OF THE ROMANIAN ACADEMY SERIES A-MATHEMATICS PHYSICS TECHNICAL SCIENCES INFORMATION SCIENCE, 2012, 13 (03) :183-190
[22]   On bisections of graphs without complete bipartite graphs [J].
Hou, Jianfeng ;
Wu, Shufei .
JOURNAL OF GRAPH THEORY, 2021, 98 (04) :630-641
[23]   Complexity of Maximum Cut on Interval Graphs [J].
Adhikary, Ranendu ;
Bose, Kaustav ;
Mukherjee, Satwik ;
Roy, Bodhayan .
DISCRETE & COMPUTATIONAL GEOMETRY, 2023, 70 (02) :307-322
[24]   On the maximum second eigenvalue of outerplanar graphs [J].
Brooks, George ;
Gu, Maggie ;
Hyatt, Jack ;
Linz, William ;
Lu, Linyuan .
DISCRETE MATHEMATICS, 2025, 348 (05)
[25]   On the Maximum Spread of Planar and Outerplanar Graphs [J].
Li, Zelong ;
Linz, William ;
Lu, Linyuan ;
Wang, Zhiyu .
ELECTRONIC JOURNAL OF COMBINATORICS, 2024, 31 (03)
[26]   Complexity of Maximum Cut on Interval Graphs [J].
Ranendu Adhikary ;
Kaustav Bose ;
Satwik Mukherjee ;
Bodhayan Roy .
Discrete & Computational Geometry, 2023, 70 :307-322
[27]   Maximum cliques in graphs with small intersection number and random intersection graphs [J].
Nikoletseas, Sotiris E. ;
Raptopoulos, Christoforos L. ;
Spirakis, Paul G. .
COMPUTER SCIENCE REVIEW, 2021, 39
[28]   Large Cuts with Local Algorithms on Triangle-Free Graphs [J].
Hirvonen, Juho ;
Rybicki, Joel ;
Schmid, Stefan ;
Suomela, Jukka .
ELECTRONIC JOURNAL OF COMBINATORICS, 2017, 24 (04)
[29]   Local Approximation of the Maximum Cut in Regular Graphs [J].
Bamas, Etienne ;
Esperet, Louis .
GRAPH-THEORETIC CONCEPTS IN COMPUTER SCIENCE (WG 2019), 2019, 11789 :66-78
[30]   Maximum Bisections of Graphs with Girth at Least Six [J].
Wu, Shufei ;
Xiong, Xiaobei .
GRAPHS AND COMBINATORICS, 2024, 40 (06)