MAXIMUM CUTS IN GRAPHS WITHOUT WHEELS

被引:3
|
作者
Lin, Jing [1 ,2 ]
Zeng, Qinghou [3 ]
Chen, Fuyuan [4 ]
机构
[1] Fuzhou Univ, Ctr Discrete Math, Fuzhou 350003, Fujian, Peoples R China
[2] Fujian Univ Technol, Coll Math & Phys, Fuzhou 350118, Fujian, Peoples R China
[3] Univ Sci & Technol China, Sch Math Sci, Hefei 230026, Anhui, Peoples R China
[4] Anhui Univ Finance & Econ, Inst Stat & Appl Math, Bengbu 233030, Anhui, Peoples R China
关键词
maximum cut; H-free; wheel graph; BIPARTITE SUBGRAPHS; BOUNDS;
D O I
10.1017/S0004972718001259
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
For a graph G, let f(G) denote the maximum number of edges in a bipartite subgraph of G. Given a fixed graph H and a positive integer m, let f(m,H) denote the minimum possible cardinality of f(G), as G ranges over all graphs on m edges that contain no copy of H. Alon et al. ['Maximum cuts and judicious partitions in graphs without short cycles', J. Combin. Theory Ser. B 88 (2003), 329-346] conjectured that, for any fixed graph H, there exists an epsilon(H) > 0 such that f(m, H) >= m/2 + Omega(m(3/4+epsilon)). We show that, for any wheel graph W-2k of 2k spokes, there exists c(k) > 0 such that f(m, W-2k) >= m/2 + c(k)m(()(2k)(-1)/()(3k)(-1)) log m. In particular, we confirm the conjecture asymptotically for W-4 and give general lower bounds for W-2k(+1).
引用
收藏
页码:13 / 26
页数:14
相关论文
共 50 条
  • [1] Maximum cuts of graphs with forbidden cycles
    Zeng, Qinghou
    Hou, Jianfeng
    ARS MATHEMATICA CONTEMPORANEA, 2018, 15 (01) : 147 - 160
  • [2] Maximum Cuts in H-Free Graphs
    Ma, Huawen
    GRAPHS AND COMBINATORICS, 2020, 36 (05) : 1503 - 1516
  • [3] Maximum Directed Cuts in Graphs with Degree Constraints
    Xu, Baogang
    Yu, Xingxing
    GRAPHS AND COMBINATORICS, 2012, 28 (04) : 563 - 574
  • [4] Maximum cuts in edge-colored graphs
    Faria, Luerbio
    Klein, Sulamita
    Sau, Ignasi
    Souza, Ueverton S.
    Sucupira, Rubens
    DISCRETE APPLIED MATHEMATICS, 2020, 281 : 229 - 234
  • [5] Maximum edge-cuts in cubic graphs with large girth and in random cubic graphs
    Kardos, Frantisek
    Kral', Daniel
    Volec, Jan
    RANDOM STRUCTURES & ALGORITHMS, 2012, 41 (04) : 506 - 520
  • [6] Maximum Bisections of Graphs Without Adjacent Quadrilaterals
    Hu, Qiming
    Xu, Baogang
    GRAPHS AND COMBINATORICS, 2025, 41 (01)
  • [7] The Maximum Spectral Radius of Graphs Without Friendship Subgraphs
    Cioaba, Sebastian
    Feng, Lihua
    Tait, Michael
    Zhang, Xiao-Dong
    ELECTRONIC JOURNAL OF COMBINATORICS, 2020, 27 (04): : 1 - 19
  • [8] Maximum bipartite subgraphs in graphs without short cycles
    Lin, Jing
    Zeng, Qinghou
    DISCRETE APPLIED MATHEMATICS, 2022, 311 : 18 - 25
  • [9] On the maximum ABC index of graphs without pendent vertices
    Shao, Zehui
    Wu, Pu
    Gao, Yingying
    Gutman, Ivan
    Zhang, Xiujun
    APPLIED MATHEMATICS AND COMPUTATION, 2017, 315 : 298 - 312
  • [10] Maximum bisections of graphs without cycles of length 4
    Rao, Mengjiao
    Hou, Jianfeng
    Zeng, Qinghou
    DISCRETE MATHEMATICS, 2022, 345 (08)