Toward a general and interpretable umami taste predictor using a multi-objective machine learning approach

被引:10
作者
Pallante, Lorenzo [1 ]
Korfiati, Aigli [2 ]
Androutsos, Lampros [2 ]
Stojceski, Filip [3 ]
Bompotas, Agorakis [4 ]
Giannikos, Ioannis [4 ]
Raftopoulos, Christos [4 ]
Malavolta, Marta [5 ]
Grasso, Gianvito [3 ]
Mavroudi, Seferina [2 ,6 ]
Kalogeras, Athanasios [4 ]
Martos, Vanessa [7 ]
Amoroso, Daria [8 ]
Piga, Dario [3 ]
Theofilatos, Konstantinos [2 ]
Deriu, Marco A. [1 ]
机构
[1] Politecn Torino, PolitoBIOMedLab, Dept Mech & Aerosp Engn, I-10129 Turin, Italy
[2] InSyBio PC, Patras 26504, Greece
[3] Dalle Molle Inst Artificial Intelligence, Dept Innovat Technol, CH-6962 Lugano, Switzerland
[4] Athena Res Ctr, Ind Syst Inst, Patras 26504, Greece
[5] Univ Ljubljana, Fac Comp & Informat Sci, Ljubljana 1000, Slovenia
[6] Univ Patras, Dept Nursing, Patras 26504, Greece
[7] Univ Granada, Inst Biotechnol, Dept Plant Physiol, Granada 18011, Spain
[8] 7Hc Srl, I-00198 Rome, Italy
来源
SCIENTIFIC REPORTS | 2022年 / 12卷 / 01期
关键词
ENHANCING PEPTIDES; SWEETNESS; IDENTIFICATION; BITTERNESS; FRAGMENTS; SELECTION;
D O I
10.1038/s41598-022-25935-3
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
The umami taste is one of the five basic taste modalities normally linked to the protein content in food. The implementation of fast and cost-effective tools for the prediction of the umami taste of a molecule remains extremely interesting to understand the molecular basis of this taste and to effectively rationalise the production and consumption of specific foods and ingredients. However, the only examples of umami predictors available in the literature rely on the amino acid sequence of the analysed peptides, limiting the applicability of the models. In the present study, we developed a novel ML-based algorithm, named VirtuousUmami, able to predict the umami taste of a query compound starting from its SMILES representation, thus opening up the possibility of potentially using such a model on any database through a standard and more general molecular description. Herein, we have tested our model on five databases related to foods or natural compounds. The proposed tool will pave the way toward the rationalisation of the molecular features underlying the umami taste and toward the design of specific peptide-inspired compounds with specific taste properties.
引用
收藏
页数:11
相关论文
共 57 条
[41]  
Rojas C., 2016, INT J QUANT STRUCT P, V1, P78, DOI [10.4018/IJQSPR.2016010104, DOI 10.4018/IJQSPR.2016010104]
[42]   A QSTR-Based Expert System to Predict Sweetness of Molecules [J].
Rojas, Cristian ;
Todeschini, Roberto ;
Ballabio, Davide ;
Mauri, Andrea ;
Consonni, Viviana ;
Tripaldi, Piercosimo ;
Grisoni, Francesca .
FRONTIERS IN CHEMISTRY, 2017, 5
[43]  
Smyth GK, 2005, STAT BIOL HEALTH, P397, DOI 10.1007/0-387-29362-0_23
[44]   The good taste of peptides [J].
Temussi, Piero A. .
JOURNAL OF PEPTIDE SCIENCE, 2012, 18 (02) :73-82
[45]   BitterSweet: Building machine learning models for predicting the bitter and sweet taste of small molecules [J].
Tuwani, Rudraksh ;
Wadhwa, Somin ;
Bagler, Ganesh .
SCIENTIFIC REPORTS, 2019, 9 (1)
[46]  
van der Maaten L, 2008, J MACH LEARN RES, V9, P2579
[47]   Exploration of Spanish Olive Oil Quality with a Miniaturized Low-Cost Fluorescence Sensor and Machine Learning Techniques [J].
Venturini, Francesca ;
Sperti, Michela ;
Michelucci, Umberto ;
Herzig, Ivo ;
Baumgartner, Michael ;
Caballero, Josep Palau ;
Jimenez, Arturo ;
Deriu, Marco Agostino .
FOODS, 2021, 10 (05)
[48]   Characterization and evaluation of umami taste: A review [J].
Wang, Wenli ;
Zhou, Xirui ;
Liu, Yuan .
TRAC-TRENDS IN ANALYTICAL CHEMISTRY, 2020, 127
[49]   Prediction of physicochemical parameters by atomic contributions [J].
Wildman, SA ;
Crippen, GM .
JOURNAL OF CHEMICAL INFORMATION AND COMPUTER SCIENCES, 1999, 39 (05) :868-873
[50]   The structure features of umami hexapeptides for the T1R1/T1R3 receptor [J].
Yu, Xiaqin ;
Zhang, Lujia ;
Miao, Xiaodan ;
Li, Yanyu ;
Liu, Yuan .
FOOD CHEMISTRY, 2017, 221 :599-605