The Border Collision Normal Form with Stochastic Switching Surface

被引:10
作者
Glendinning, Paul [1 ,2 ]
机构
[1] Univ Manchester, CICADA, Manchester M13 9PL, Lancs, England
[2] Univ Manchester, Sch Math, Manchester M13 9PL, Lancs, England
基金
英国工程与自然科学研究理事会;
关键词
nonsmooth bifurcation; attractors; border collision; stochastic dynamics; switched system; BIFURCATIONS; SYSTEMS;
D O I
10.1137/130931643
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In the study of discrete time piecewise smooth dynamical systems the deterministic border collision normal form describes the bifurcations as a fixed point moves across the switching surface with changing parameter. If the position of the switching surface varies randomly, we give conditions which imply that the attractor close to the bifurcation point is the attractor of an iterated function system. The proof uses an equivalent metric to the Euclidean metric because the functions involved are never contractions in the Euclidean metric. If the conditions do not hold, then a range of possibilities may be realized, including local instability, and some examples are investigated numerically.
引用
收藏
页码:181 / 193
页数:13
相关论文
共 18 条
[1]   Border collision bifurcations in two-dimensional piecewise smooth maps [J].
Banerjee, S ;
Grebogi, C .
PHYSICAL REVIEW E, 1999, 59 (04) :4052-4061
[2]   ITERATED FUNCTION SYSTEMS AND THE GLOBAL CONSTRUCTION OF FRACTALS [J].
BARNSLEY, MF ;
DEMKO, S .
PROCEEDINGS OF THE ROYAL SOCIETY OF LONDON SERIES A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 1985, 399 (1817) :243-275
[3]   HIDDEN VARIABLE FRACTAL INTERPOLATION FUNCTIONS [J].
BARNSLEY, MF ;
ELTON, J ;
HARDIN, D ;
MASSOPUST, P .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 1989, 20 (05) :1218-1242
[4]  
Blom H. A. P., 2006, LECT NOTES COMPUT SC, V337
[5]  
Bujorianu LM, 2012, COMMUN CONTROL ENG, P1, DOI 10.1007/978-1-4471-2795-6
[6]   On the origin and bifurcations of stick-slip oscillations [J].
Dankowicz, H ;
Nordmark, AB .
PHYSICA D-NONLINEAR PHENOMENA, 2000, 136 (3-4) :280-302
[7]   Qualitative simulation of genetic regulatory networks using piecewise-linear models [J].
De Jong, H ;
Gouzé, JL ;
Hernandez, C ;
Page, M ;
Sari, T ;
Geiselmann, J .
BULLETIN OF MATHEMATICAL BIOLOGY, 2004, 66 (02) :301-340
[8]  
di Bernardo M, 2003, PROCEEDINGS OF THE 2003 IEEE INTERNATIONAL SYMPOSIUM ON CIRCUITS AND SYSTEMS, VOL III, P76
[9]  
DiBernardo M, 2008, APPL MATH SCI, V163, P1, DOI 10.1007/978-1-84628-708-4
[10]  
Dubuc S., 1994, C R MATH REP ACAD SC, V16, P85