A deubiquitinating enzyme interacts with SIR4 and regulates silencing in S-cerevisiae

被引:212
作者
Moazed, D
Johnson, AD
机构
[1] Department of Microbiology, University of California, San Francisco
基金
美国国家卫生研究院;
关键词
D O I
10.1016/S0092-8674(00)80139-7
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
The SIR2, SIR3, and SIR4 proteins are required for silencing of transcription at the silent mating type loci and at telomeres in yeast. Using protein affinity chromatography, we show that SIR2, SIR3, and two proteins of 69 and 110 kDa tightly associate with SIR4. Surprisingly, the 110 kDa SIR4-binding protein is identical to UBP3, one of several previously described yeast enzymes that deubiquitinate target proteins. Deletion of the UBP3 gene results in markedly improved silencing of genes inserted either near a telomere or at one of the silent mating type loci, indicating that UBP3 is an inhibitor of silencing. We discuss possible roles for UBP3 in controlling the activity or assembly of the SIR protein complex.
引用
收藏
页码:667 / 677
页数:11
相关论文
共 65 条
[1]   MUTATIONS DEREPRESSING SILENT CENTROMERIC DOMAINS IN FISSION YEAST DISRUPT CHROMOSOME SEGREGATION [J].
ALLSHIRE, RC ;
NIMMO, ER ;
EKWALL, K ;
JAVERZAT, JP ;
CRANSTON, G .
GENES & DEVELOPMENT, 1995, 9 (02) :218-233
[2]   OVERCOMING TELOMERIC SILENCING - A TRANSACTIVATOR COMPETES TO ESTABLISH GENE-EXPRESSION IN A CELL CYCLE-DEPENDENT WAY [J].
APARICIO, OM ;
GOTTSCHLING, DE .
GENES & DEVELOPMENT, 1994, 8 (10) :1133-1146
[3]   MODIFIERS OF POSITION EFFECT ARE SHARED BETWEEN TELOMERIC AND SILENT MATING-TYPE LOCI IN SACCHAROMYCES-CEREVISIAE [J].
APARICIO, OM ;
BILLINGTON, BL ;
GOTTSCHLING, DE .
CELL, 1991, 66 (06) :1279-1287
[4]  
BAKER RT, 1992, J BIOL CHEM, V267, P23364
[5]   ATP-DEPENDENT RECOGNITION OF EUKARYOTIC ORIGINS OF DNA-REPLICATION BY A MULTIPROTEIN COMPLEX [J].
BELL, SP ;
STILLMAN, B .
NATURE, 1992, 357 (6374) :128-134
[6]   CHARACTERIZATION OF A SILENCER IN YEAST - A DNA-SEQUENCE WITH PROPERTIES OPPOSITE TO THOSE OF A TRANSCRIPTIONAL ENHANCER [J].
BRAND, AH ;
BREEDEN, L ;
ABRAHAM, J ;
STERNGLANZ, R ;
NASMYTH, K .
CELL, 1985, 41 (01) :41-48
[7]   A YEAST SILENCER CONTAINS SEQUENCES THAT CAN PROMOTE AUTONOMOUS PLASMID REPLICATION AND TRANSCRIPTIONAL ACTIVATION [J].
BRAND, AH ;
MICKLEM, G ;
NASMYTH, K .
CELL, 1987, 51 (05) :709-719
[8]   TRANSCRIPTIONAL SILENCING IN YEAST IS ASSOCIATED WITH REDUCED NUCLEOSOME ACETYLATION [J].
BRAUNSTEIN, M ;
ROSE, AB ;
HOLMES, SG ;
ALLIS, CD ;
BROACH, JR .
GENES & DEVELOPMENT, 1993, 7 (04) :592-604
[9]   2 DNA-BINDING FACTORS RECOGNIZE SPECIFIC SEQUENCES AT SILENCERS, UPSTREAM ACTIVATING SEQUENCES, AUTONOMOUSLY REPLICATING SEQUENCES, AND TELOMERES IN SACCHAROMYCES-CEREVISIAE [J].
BUCHMAN, AR ;
KIMMERLY, WJ ;
RINE, J ;
KORNBERG, RD .
MOLECULAR AND CELLULAR BIOLOGY, 1988, 8 (01) :210-225
[10]   Site-specific phosphorylation of I kappa B alpha by a novel ubiquitination-dependent protein kinase activity [J].
Chen, ZJ ;
Parent, L ;
Maniatis, T .
CELL, 1996, 84 (06) :853-862