Thermo-mechanical analysis of 3D manufactured electrodes for solid oxide fuel cells

被引:7
作者
Chueh, Chih-Che [1 ]
Bertei, Antonio [2 ]
机构
[1] Natl Cheng Kung Univ, Dept Aeronaut & Astronaut, Tainan 701, Taiwan
[2] Univ Pisa, Dept Civil & Ind Engn, Largo Lucio Lazzarino 2, I-56122 Pisa, Italy
关键词
Electrode design; Additive manufacturing; Optimisation; Solid oxide fuel cells; Thermal stress analysis; ANODE; SOFC; DESIGN; ELECTROLYTES; TEMPERATURE; SIMULATION; INTERLAYER; TRANSPORT; STRESS; ENERGY;
D O I
10.1016/j.jeurceramsoc.2020.09.004
中图分类号
TQ174 [陶瓷工业]; TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Additive manufacturing has widened the scope for designing more performing microstructures for solid oxide fuel cells (SOFCs). Structural modifications, such as the insertion of ceramic pillars within the electrode, facilitate ion transport and boost the electrochemical performance. However, questions still remain on the related mechanical requirements during operation. This study presents a comprehensive thermal-electrochemical-mechanical model targeted to assess the stress distribution in 3D manufactured electrodes. Simulations show that a dense pillar increases the stress distribution by ca. 10 % compared to a flat electrode benchmark. The stress is generated by the material thermal contraction and intensifies at the pillar-electrolyte junction while external loads have negligible effects. An analysis on manufacturing inaccuracies indicates that sharp edges, surface roughness and tilted pillars intensify the stress; nonetheless, the corresponding stress increase is narrow, suggesting that manufacturing inaccuracies can be easily tolerated. The model points towards robust design criteria for 3D manufactured electrodes.
引用
收藏
页码:497 / 508
页数:12
相关论文
共 60 条
[1]   Three dimensional modeling of an solid oxide fuel cell coupling charge transfer phenomena with transport processes and heat generation [J].
Andersson, Martin ;
Paradis, Hedvig ;
Yuan, Jinliang ;
Sunden, Bengt .
ELECTROCHIMICA ACTA, 2013, 109 :881-893
[2]   Residual stress and thermal cycling of planar solid oxide fuel cells [J].
Atkinson, A. ;
Sun, B. .
MATERIALS SCIENCE AND TECHNOLOGY, 2007, 23 (10) :1135-1143
[3]   Guidelines for the Rational Design and Engineering of 3D Manufactured Solid Oxide Fuel Cell Composite Electrodes [J].
Bertei, A. ;
Tariq, F. ;
Yufit, V. ;
Ruiz-Trejo, E. ;
Brandon, N. P. .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2017, 164 (02) :F89-F98
[4]   Electrochemical Simulation of Planar Solid Oxide Fuel Cells with Detailed Microstructural Modeling [J].
Bertei, A. ;
Mertens, J. ;
Nicolella, C. .
ELECTROCHIMICA ACTA, 2014, 146 :151-163
[5]   Solid oxide fuel cell development at Forschungszentrum Juelich [J].
Blum, L. ;
Buchkremer, H.-P. ;
Gross, S. ;
Gubner, A. ;
de Haart, L. G. J. ;
Nabielek, H. ;
Quadakkers, W. J. ;
Reisgen, U. ;
Smith, M. J. ;
Steinberger-Wilckens, R. ;
Steinbrech, R. W. ;
Tietz, F. ;
Vinke, I. C. .
FUEL CELLS, 2007, 7 (03) :204-210
[6]   Worldwide SOFC technology overview and benchmark [J].
Blum, L ;
Meulenberg, WA ;
Nabielek, H ;
Steinberger-Wilckens, R .
INTERNATIONAL JOURNAL OF APPLIED CERAMIC TECHNOLOGY, 2005, 2 (06) :482-492
[7]   Influence of porosity on mechanical properties of tetragonal stabilized zirconia [J].
Boccaccini, Dino N. ;
Frandsen, Henrik Lund ;
Soprani, S. ;
Cannio, Maria ;
Klemenso, Trine ;
Gil, Vanesa ;
Hendriksen, Peter Vang .
JOURNAL OF THE EUROPEAN CERAMIC SOCIETY, 2018, 38 (04) :1720-1735
[8]   Numerical Study of Solid Oxide Fuel Cell Contacting Mechanics [J].
Chen, Z. ;
Wang, X. ;
Brandon, N. ;
Atkinson, A. .
FUEL CELLS, 2018, 18 (01) :42-50
[9]   Thermo-electrochemical and thermal stress analysis for an anode-supported SOFC cell [J].
Chiang, Lieh-Kwang ;
Liu, Hui-Chung ;
Shiu, Yao-Hua ;
Lee, Chien-Hsiung ;
Lee, Ryey-Yi .
RENEWABLE ENERGY, 2008, 33 (12) :2580-2588
[10]   Design guidelines for the manufacturing of the electrode-electrolyte interface of solid oxide fuel cells [J].
Chueh, Chih-Che ;
Bertei, Antonio ;
Nicolella, Cristiano .
JOURNAL OF POWER SOURCES, 2019, 437