Deep LSTM-Based Multimode Pedestrian Dead Reckoning System for Indoor Localization

被引:3
|
作者
Im, Chaehun [1 ]
Eom, Chahyeon [1 ]
Lee, Hyunwook [1 ]
Jang, Suhwan [1 ]
Lee, Chungyong [1 ]
机构
[1] Yonsei Univ, Sch Elect & Elect Engn, Seoul, South Korea
基金
新加坡国家研究基金会;
关键词
Deep learning; feature transformation; long short-term memory (LSTM); pedestrian dead reckoning;
D O I
10.1109/ICEIC54506.2022.9748406
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
We propose a multimode pedestrian dead reckoning (PDR) system using a recurrent neural network. We adopt a long short-term memory (LSTM) layer to extract latent features from the sensor data. We then transform the extracted latent vector using conditional input of the pedestrian's mode to make the model operate in different contexts. Finally, the step length and heading angle are obtained through a multilayer neural network with the transformed sensor latent vector as input. The simulation results show that the proposed scheme can track pedestrians in the multimode situation using a single model.
引用
收藏
页数:2
相关论文
共 50 条
  • [1] Indoor Localization Based on Magnetic Anomalies and Pedestrian Dead Reckoning
    Ma, Jiabin
    Qian, Jiuchao
    Li, Ping
    Ying, Rendong
    Liu, Peilin
    PROCEEDINGS OF THE 26TH INTERNATIONAL TECHNICAL MEETING OF THE SATELLITE DIVISION OF THE INSTITUTE OF NAVIGATION (ION GNSS 2013), 2013, : 1033 - 1038
  • [2] SmartPDR: Smartphone-Based Pedestrian Dead Reckoning for Indoor Localization
    Kang, Wonho
    Han, Youngnam
    IEEE SENSORS JOURNAL, 2015, 15 (05) : 2906 - 2916
  • [3] Wearable indoor pedestrian dead reckoning system
    Torres-Solis, Jorge
    Chau, Tom
    PERVASIVE AND MOBILE COMPUTING, 2010, 6 (03) : 351 - 361
  • [4] An Indoor Collaborative Pedestrian Dead Reckoning System
    Li, Yi-Ting
    Chen, Guaning
    Sun, Min-Te
    2013 42ND ANNUAL INTERNATIONAL CONFERENCE ON PARALLEL PROCESSING (ICPP), 2013, : 923 - 930
  • [5] Pedestrian Dead-Reckoning Indoor Localization Based on OS-ELM
    Zhang, Mingyang
    Wen, Yingyou
    Chen, Jian
    Yang, Xiaotao
    Gao, Rui
    Zhao, Hong
    IEEE ACCESS, 2018, 6 : 6116 - 6129
  • [6] An indoor fusion localization method using pedestrian dead reckoning
    Zhao Q.
    Luan P.
    Wang H.
    Lv H.
    Feng G.
    Tang M.
    Zhao, Qian (zhaoqian@hrbcu.edu.cn), 2018, Totem Publishers Ltd (14) : 2343 - 2353
  • [7] LSTM-based Dead Reckoning Navigation for Autonomous Underwater Vehicles
    Topini, Edoardo
    Topini, Alberto
    Franchi, Matteo
    Bucci, Alessandro
    Secciani, Nicola
    Ridolfi, Alessandro
    Allotta, Benedetto
    GLOBAL OCEANS 2020: SINGAPORE - U.S. GULF COAST, 2020,
  • [8] ARPDR: An Accurate and Robust Pedestrian Dead Reckoning System for Indoor Localization on Handheld Smartphones
    Teng, Xiaoqiang
    Xu, Pengfei
    Guo, Deke
    Guo, Yulan
    Hu, Runbo
    Chai, Hua
    2020 IEEE/RSJ INTERNATIONAL CONFERENCE ON INTELLIGENT ROBOTS AND SYSTEMS (IROS), 2020, : 10888 - 10893
  • [9] Indoor Localization Using Pedestrian Dead Reckoning Updated with RFID-Based Fiducials
    House, Samuel
    Connell, Sean
    Milligan, Ian
    Austin, Daniel
    Hayes, Tamara L.
    Chiang, Patrick
    2011 ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY (EMBC), 2011, : 7598 - 7601
  • [10] Heading Estimation for Multimode Pedestrian Dead Reckoning
    Zheng, Lingxiao
    Zhan, Xingqun
    Zhang, Xin
    Wang, Shizhuang
    Yuan, Wenhan
    IEEE SENSORS JOURNAL, 2020, 20 (15) : 8731 - 8739