Cinnamate uptake by rat small intestine: Transport kinetics and transepithelial transfer

被引:36
作者
Ader, P
Grenacher, B
Langguth, P
Scharrer, E
Wolffram, S
机构
[1] UNIV ZURICH,INST VET PHYSIOL,CH-8057 ZURICH,SWITZERLAND
[2] SWISS FED INST TECHNOL,DEPT PHARM,CH-8057 ZURICH,SWITZERLAND
关键词
D O I
10.1113/expphysiol.1996.sp003995
中图分类号
Q4 [生理学];
学科分类号
071003 ;
摘要
Due to their ubiquitous occurrence in the plant kingdom, plant: phenolics, including monomeric cinnamic acids, are ingested by man and animals in variable amounts with their natural diets. Recently, Na+-dependent saturable transport of cinnamic acid across the brush-border membrane of rat jejunum has been described. It was the aim of the present study to characterize this mechanism in more detail. We therefore determined the transport kinetics of mucosal uptake of radioactively labelled cinnamic acid under Various conditions using a short-term mucosal uptake technique. In addition, the transfer of cinnamic acid across the jejunal wall was investigated using everted intestinal sacs. Investigations of the kinetics of cinnamic acid uptake by the mid-jejunal mucosa revealed the involvement of two transport components, a diffusive Na+-independent mechanism and a saturable Na+-dependent mechanism. The results obtained with everted sacs provided Further evidence of the existence of an active Na+ gradient-driven transport of cinnamic acid across the intestinal epithelium. In the presence of Na+, a significant accumulation of cinnamate occurred inside the serosal compartment and this was strongly inhibited by serosal ouabain. A decrease in the extracellular pH stimulated mucosal cinnamate uptake by increasing the apparent affinity (1/K-m). This may be attributable to the involvement of a transmembrane H+ gradient in Na+-dependent cinnamate transport because the protonophore FCCP caused a significant reduction of cinnamate uptake only in the presence of Na+. The kinetics of cinnamate transport in the absence or presence of a surplus of either unlabelled cinnamate or unlabelled butyrate indicates a reduction in the apparent affinity of the Na+-dependent mechanism involved in cinnamate uptake. These results may be explained by a modification of die mechanism by the intracellular pH. Additionally, competitive inhibition of cinnamate uptake by substances structurally related to cinnamic acid may also be involved.
引用
收藏
页码:943 / 955
页数:13
相关论文
共 29 条
[11]   EFFECTS OF PHENOLIC MONOMERS ON RAT PERFORMANCE AND METABOLISM [J].
JUNG, HJG ;
FAHEY, GC .
JOURNAL OF NUTRITION, 1983, 113 (03) :546-556
[12]  
KAHL R, 1991, OXIDATIVE STRESS OXI, P45
[13]   CINNAMIC ACID - A NATURAL PRODUCT WITH POTENTIAL USE IN CANCER INTERVENTION [J].
LIU, L ;
HUDGINS, WR ;
SHACK, S ;
YIN, MQ ;
SAMID, D .
INTERNATIONAL JOURNAL OF CANCER, 1995, 62 (03) :345-350
[14]   PHENOLIC-ACIDS IN THE FIBER OF SOME TROPICAL GRASSES, EFFECT ON FEED QUALITY, AND THEIR METABOLISM BY SHEEP [J].
LOWRY, JB ;
SUMPTER, EA ;
MCSWEENEY, CS ;
SCHLINK, AC ;
BOWDEN, B .
AUSTRALIAN JOURNAL OF AGRICULTURAL RESEARCH, 1993, 44 (05) :1123-1133
[15]   THE INFLUENCE OF BUFFER PH, GLUCOSE AND SODIUM-ION CONCENTRATION ON THE ACID MICROCLIMATE IN RAT PROXIMAL JEJUNUM INVITRO [J].
LUCAS, ML ;
LEI, FH ;
BLAIR, JA .
PFLUGERS ARCHIV-EUROPEAN JOURNAL OF PHYSIOLOGY, 1980, 385 (02) :137-142
[17]   EFFECTS OF EXTRACELLULAR PH AND PHENOLIC MONOMERS ON GLUCOSE-UPTAKE BY FIBROBACTER-SUCCINOGENES S85 [J].
MARTIN, SA .
LETTERS IN APPLIED MICROBIOLOGY, 1992, 15 (01) :26-28
[18]   INHIBITION OF HUMAN LOW-DENSITY-LIPOPROTEIN OXIDATION BY CAFFEIC ACID AND OTHER HYDROXYCINNAMIC ACID-DERIVATIVES [J].
NARDINI, M ;
DAQUINO, M ;
TOMASSI, G ;
GENTILI, V ;
DIFELICE, M ;
SCACCINI, C .
FREE RADICAL BIOLOGY AND MEDICINE, 1995, 19 (05) :541-552
[19]   METABOLISM OF TRANS-CINNAMIC ACID IN THE RAT AND THE MOUSE AND ITS VARIATION WITH DOSE [J].
NUTLEY, BP ;
FARMER, P ;
CALDWELL, J .
FOOD AND CHEMICAL TOXICOLOGY, 1994, 32 (10) :877-886
[20]  
Oestmann A., 1995, Ubersichten zur Tierernahrung, V23, P105