Sparse Bounds for a Prototypical Singular Radon Transform

被引:10
|
作者
Oberlin, Richard [1 ]
机构
[1] Florida State Univ, Dept Math, Tallahassee, FL 32306 USA
来源
CANADIAN MATHEMATICAL BULLETIN-BULLETIN CANADIEN DE MATHEMATIQUES | 2019年 / 62卷 / 02期
基金
美国国家科学基金会;
关键词
sparse domination; singular radon transform; maximal radon transform;
D O I
10.4153/CMB-2018-007-5
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We use a variant of a technique used by M. T. Lacey to give sparse L-p (log(L) )(4) bounds for a class of model singular and maximal Radon transforms.
引用
收藏
页码:405 / 415
页数:11
相关论文
共 50 条
  • [1] Sparse domination of singular Radon transform
    Hu, Bingyang
    JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 2020, 139 : 235 - 316
  • [2] SPARSE BOUNDS FOR DISCRETE SINGULAR RADON TRANSFORMS
    Anderson, Theresa C.
    Hu, Bingyang
    Roos, Joris
    COLLOQUIUM MATHEMATICUM, 2021, 165 (02) : 199 - 217
  • [3] SPARSE BOUNDS FOR MAXIMAL ROUGH SINGULAR INTEGRALS VIA THE FOURIER TRANSFORM
    Di Plinio, Francesco
    Hytonen, Tuomas P.
    Li, Kangwei
    ANNALES DE L INSTITUT FOURIER, 2020, 70 (05) : 1871 - 1902
  • [4] Endpoint bounds for a generalized Radon transform
    Stovall, Betsy
    JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 2009, 80 : 357 - 374
  • [5] Latest views of the sparse Radon transform
    Trad, D
    Ulrych, T
    Sacchi, M
    GEOPHYSICS, 2003, 68 (01) : 386 - 399
  • [6] Superresolution stacking based on sparse Radon transform
    Ma, Yue
    Luo, Yi
    Kelamis, Panos
    GEOPHYSICS, 2019, 84 (01) : V45 - V54
  • [7] Sparse bounds for oscillatory and random singular integrals
    Lacey, Michael T.
    Spencer, Scott
    NEW YORK JOURNAL OF MATHEMATICS, 2017, 23 : 119 - 131
  • [8] SPARSE BOUNDS FOR THE DISCRETE CUBIC HILBERT TRANSFORM
    Culiuc, Amalia
    Kesler, Robert
    Lacey, Michael T.
    ANALYSIS & PDE, 2019, 12 (05): : 1259 - 1272
  • [9] A SINGULAR RADON-TRANSFORM ON RP3
    THOMPSON, AA
    COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 1989, 14 (11) : 1461 - 1470
  • [10] A note on singular value decomposition for radon transform in Rn
    Wang, JP
    Du, JY
    ACTA MATHEMATICA SCIENTIA, 2002, 22 (03) : 311 - 318