Cubulating small cancellation groups

被引:105
作者
Wise, DT [1 ]
机构
[1] McGill Univ, Montreal, PQ H3A 2K6, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
D O I
10.1007/s00039-004-0454-y
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We study the B(6) and B(4)-T(4) small cancellation groups. These classes include the usual C'(1/6) and C'(1/4)-T(4) metric small cancellation groups. We show that every finitely presented B(4)-T(4) or word-hyperbolic B(6) group acts properly discontinuously and cocompactly on a CAT(0) cube complex. We show that finitely generated infinite B(6) and B(4)-T(4) groups have codimension 1 subgroups and thus do not have property (T). We show that a finitely presented B(6) group is wordhyperbolic if and only if it contains no Z x Z subgroup.
引用
收藏
页码:150 / 214
页数:65
相关论文
共 26 条
[1]  
ALONSO J. M., 1990, GROUP THEORY GEOMETR, P3
[2]  
[Anonymous], 1993, GEOMETRIC GROUP THEO
[3]   On L-2-cohomology and property (T) for automorphism groups of polyhedral cell complexes [J].
Ballmann, W ;
Swiatkowski, J .
GEOMETRIC AND FUNCTIONAL ANALYSIS, 1997, 7 (04) :615-645
[4]   THE ACCESSIBILITY OF FINITELY PRESENTED GROUPS [J].
DUNWOODY, MJ .
INVENTIONES MATHEMATICAE, 1985, 81 (03) :449-457
[5]  
GERASIMOV VN, 1997, ALGEBRA GEOMETRY ANA, P91
[6]  
Gersten S.M., 1987, ESSAYS GROUP THEORY, V8, P15
[7]   Subgroups of word hyperbolic groups in dimension 2 [J].
Gersten, SM .
JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 1996, 54 :261-283
[8]   SMALL CANCELLATION THEORY AND AUTOMATIC GROUPS [J].
GERSTEN, SM ;
SHORT, HB .
INVENTIONES MATHEMATICAE, 1990, 102 (02) :305-334
[9]   Random walk in random groups [J].
Gromov, M .
GEOMETRIC AND FUNCTIONAL ANALYSIS, 2003, 13 (01) :73-146
[10]  
Gromov M., 1987, Math. Sci. Res. Inst. Publ., V8, P75, DOI [DOI 10.1007/978-1-4613-9586-7_3, 10.1007/978-1-4613-9586-7_3]