NON LINEAR SCHEMES FOR THE HEAT EQUATION IN 1D

被引:7
作者
Despres, Bruno [1 ]
机构
[1] Univ Paris 06, Lab Jacques Louis Lions, F-75252 Paris 05, France
来源
ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE | 2014年 / 48卷 / 01期
关键词
Finite volume schemes; heat equation; non linear correction; FINITE-VOLUME SCHEMES; MESHES; DISCRETIZATION;
D O I
10.1051/m2an/2013096
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Inspired by the growing use of non linear discretization techniques for the linear diffusion equation in industrial codes, we construct and analyze various explicit non linear finite volume schemes for the heat equation in dimension one. These schemes are inspired by the Le Potier's trick [C. R. Acad. Sci. Paris, Ser. I 348 (2010) 691-695]. They preserve the maximum principle and admit a finite volume formulation. We provide a original functional setting for the analysis of convergence of such methods. In particular we show that the fourth discrete derivative is bounded in quadratic norm. Finally we construct, analyze and test a new explicit non linear maximum preserving scheme with third order convergence: it is optimal on numerical tests.
引用
收藏
页码:107 / 134
页数:28
相关论文
共 28 条