Homotopy classification of minimizers of the Ginzburg-Landau energy and the existence of permanent currents

被引:36
作者
Rubinstein, J [1 ]
Sternberg, P [1 ]
机构
[1] INDIANA UNIV, DEPT MATH, BLOOMINGTON, IN 47405 USA
关键词
D O I
10.1007/BF02103722
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Our objective is to explain the phenomenon of permanent currents within the context of the Ginzburg-Landau model for superconductors. Using variational techniques we make a connection between the formation of permanent currents and the topology of the superconducting sample.
引用
收藏
页码:257 / 263
页数:7
相关论文
共 7 条
[1]  
ABRIKOSOV AA, 1957, SOV PHYS JETP-USSR, V5, P1174
[2]   DENSITY OF SMOOTH FUNCTIONS BETWEEN 2 MANIFOLDS IN SOBOLEV SPACES [J].
BETHUEL, F ;
ZHENG, XM .
JOURNAL OF FUNCTIONAL ANALYSIS, 1988, 80 (01) :60-75
[3]   THE APPROXIMATION PROBLEM FOR SOBOLEV MAPS BETWEEN 2 MANIFOLDS [J].
BETHUEL, F .
ACTA MATHEMATICA, 1991, 167 (3-4) :153-206
[4]   ANALYSIS AND APPROXIMATION OF THE GINZBURG-LANDAU MODEL OF SUPERCONDUCTIVITY [J].
DU, Q ;
GUNZBURGER, MD ;
PETERSON, JS .
SIAM REVIEW, 1992, 34 (01) :54-81
[5]  
JIMBO S, 1994, GINZBURG LANDAU EQUA
[6]   QUANTIZATION OF FLUXOID IN SUPERCONDUCTIVITY [J].
KELLER, JB ;
ZUMINO, B .
PHYSICAL REVIEW LETTERS, 1961, 7 (05) :164-&