Finsler interpolation inequalities

被引:178
作者
Ohta, Shin-ichi [1 ]
机构
[1] Kyoto Univ, Dept Math, Fac Sci, Kyoto 6068502, Japan
关键词
METRIC MEASURE-SPACES; POLAR FACTORIZATION; CURVATURE; CONVEXITY; GEOMETRY; MAPS;
D O I
10.1007/s00526-009-0227-4
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We extend Cordero-Erausquin et al.'s Riemannian Borell-Brascamp-Lieb inequality to Finsler manifolds. Among applications, we establish the equivalence between Sturm, Lott and Villani's curvature-dimension condition and a certain lower Ricci curvature bound. We also prove a new volume comparison theorem for Finsler manifolds which is of independent interest.
引用
收藏
页码:211 / 249
页数:39
相关论文
共 41 条
[1]  
ALVAREZ PAIVA J. C., 2004, SAMPLER RIEMANN FINS, V50, P1
[2]  
[Anonymous], 2006, RIEMANNIAN GEOMETRY, DOI DOI 10.1017/CBO9780511616822
[3]  
[Anonymous], 2003, TOPICS OPTIMAL TRANS
[4]  
Auslander L., 1955, Trans. Am. Math. Soc, V79, P378, DOI [10.1090/S0002-9947-1955-0071833-6, DOI 10.1090/S0002-9947-1955-0071833-6]
[5]  
Bakry D., 1985, Lecture Notes in Math., VXIX, P177, DOI 10.1007/BFb0075847
[6]  
Bao D., 2000, An introduction to RiemannFinsler geometry
[7]  
Bernard P, 2007, J EUR MATH SOC, V9, P85
[8]   The Monge problem for supercritical Mane potentials on compact manifolds [J].
Bernard, Patrick ;
Buffoni, Boris .
ADVANCES IN MATHEMATICS, 2006, 207 (02) :691-706
[9]   Existence and uniqueness of optimal maps on Alexandrov spaces [J].
Bertrand, Jerome .
ADVANCES IN MATHEMATICS, 2008, 219 (03) :838-851