Unsteady flow of viscoelastic fluid with fractional Maxwell model in a channel

被引:114
作者
Qi, Haitao [1 ]
Xu, Mingyu
机构
[1] Shandong Univ, Dept Appl Math & Stat, Weihai 264209, Peoples R China
[2] Shandong Univ, Sch Math & Syst Sci, Jinan 250100, Peoples R China
基金
中国国家自然科学基金;
关键词
viscoelastic fluid; unsteady channel flow; fractional Maxwell model; exact solution;
D O I
10.1016/j.mechrescom.2006.09.003
中图分类号
O3 [力学];
学科分类号
08 ; 0801 ;
摘要
The unsteady flow of viscoelastic fluid with the fractional derivative Maxwell model (FDMM) in a channel is studied in this note. The exact solutions are obtained for an arbitrary pressure gradient by means of the finite Fourier cosine transform and the Laplace transform. Two special cases of pressure gradient are discussed. Some results given by the classical models with integer-order are included in this note. (C) 2006 Elsevier Ltd. All rights reserved.
引用
收藏
页码:210 / 212
页数:3
相关论文
共 13 条
  • [1] Start-up flows of second grade fluids in domains with one finite dimension
    Bandelli, R
    Rajagopal, KR
    [J]. INTERNATIONAL JOURNAL OF NON-LINEAR MECHANICS, 1995, 30 (06) : 817 - 839
  • [2] UNSTEADY LAMINAR INCOMPRESSIBLE FLOW THROUGH RECTANGULAR DUCTS
    FAN, C
    CHAO, BT
    [J]. ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 1965, 16 (03): : 351 - &
  • [3] RELAXATION AND RETARDATION FUNCTIONS OF THE MAXWELL MODEL WITH FRACTIONAL DERIVATIVES
    FRIEDRICH, C
    [J]. RHEOLOGICA ACTA, 1991, 30 (02) : 151 - 158
  • [4] Hilfer R., 2001, Applications of Fractional Calculus in Physics
  • [5] Mainardi F., 1997, Fractals and Fractional Calculus in Continuum Mechanics, P291, DOI DOI 10.1007/978-3-7091-2664-6_7
  • [6] MAJDALANI J, 2002, AIAA20022981
  • [7] Podlubny I., 1999, Fractional Di ff erential Equations
  • [8] UNSTEADY-FLOW OF AN ELASTOVISCOUS FLUID IN TUBES OF UNIFORM CROSS-SECTION
    RAMKISSOON, H
    EASWARAN, CV
    MAJUMDAR, SR
    [J]. INTERNATIONAL JOURNAL OF NON-LINEAR MECHANICS, 1989, 24 (06) : 585 - 597
  • [9] Samko SG., 1993, Fractional Integral and Derivatives: Theory and Applications
  • [10] Tan WC, 2003, INT J NONLINEAR MECH, V38, P645, DOI 10.1016/S0020-7462(01)00121-4