Exploring Phase-Change Memory: From Material Systems to Device Physics

被引:12
作者
Ren, Yanyun [1 ]
Sun, Ruoyao [2 ]
Chen, Stephenie Hiu Yuet [3 ]
Du, Chunyu [4 ]
Han, Su-Ting [4 ]
Zhou, Ye [1 ]
机构
[1] Shenzhen Univ, Inst Adv Study, Shenzhen 518060, Peoples R China
[2] Northeast Normal Univ, Ctr Adv Optoelect Funct Mat Res, Key Lab UV Light Emitting Mat & Technol, Changchun 130000, Peoples R China
[3] Harrow Int Sch Hong Kong, 38 Tsing Ying Rd, Hong Kong, Peoples R China
[4] Shenzhen Univ, Inst Microscale Optoelect, Shenzhen 518060, Peoples R China
来源
PHYSICA STATUS SOLIDI-RAPID RESEARCH LETTERS | 2021年 / 15卷 / 03期
基金
中国国家自然科学基金;
关键词
artificial neurons; artificial synapses; memory; neuromorphic applications; phase change;
D O I
10.1002/pssr.202000394
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
To deal with the growing demand for data storage and processing, phase-change memory (PCM) provides one of the most promising candidates for next-generation nonvolatile data storage and neuromorphic computing applications. A lot of effort has been made toward optimizing the materials and device design; thus, excellent device performances have been achieved including high density, fast switching speed, great endurance, and retention. In addition, the widely tunable optical characteristics of PCMs are irresistibly attractive for optoelectronic or all-optical applications with unprecedented bandwidth, low energy consumption, and multilevel data storage. Herein, the materials system and switching mechanisms on experimental and modeling methods for PCM designs and applications are discussed. Electric-domain and optical-domain PCM-based artificial synapses/neurons and their applications in neuromorphic computing are also reviewed. Finally, the future prospects and challenges of PCM-based applications on materials, devices, algorithms, and system levels are highlighted.
引用
收藏
页数:19
相关论文
共 151 条
[1]   Energy Scaling Advantages of Resistive Memory Crossbar Based Computation and Its Application to Sparse Coding [J].
Agarwal, Sapan ;
Quach, Tu-Thach ;
Parekh, Ojas ;
Hsia, Alexander H. ;
DeBenedictis, Erik P. ;
James, Conrad D. ;
Marinella, Matthew J. ;
Aimone, James B. .
FRONTIERS IN NEUROSCIENCE, 2016, 9
[2]   Structural phase transitions on the nanoscale:: The crucial pattern in the phase-change materials Ge2Sb2Te5 and GeTe [J].
Akola, J. ;
Jones, R. O. .
PHYSICAL REVIEW B, 2007, 76 (23)
[3]   Equivalent-accuracy accelerated neural-network training using analogue memory [J].
Ambrogio, Stefano ;
Narayanan, Pritish ;
Tsai, Hsinyu ;
Shelby, Robert M. ;
Boybat, Irem ;
di Nolfo, Carmelo ;
Sidler, Severin ;
Giordano, Massimo ;
Bodini, Martina ;
Farinha, Nathan C. P. ;
Killeen, Benjamin ;
Cheng, Christina ;
Jaoudi, Yassine ;
Burr, Geoffrey W. .
NATURE, 2018, 558 (7708) :60-+
[4]   Unsupervised Learning by Spike Timing Dependent Plasticity in Phase Change Memory (PCM) Synapses [J].
Ambrogio, Stefano ;
Ciocchini, Nicola ;
Laudato, Mario ;
Milo, Valerio ;
Pirovano, Agostino ;
Fantini, Paolo ;
Ielmini, Daniele .
FRONTIERS IN NEUROSCIENCE, 2016, 10
[5]  
[Anonymous], 2016, IEDM, DOI DOI 10.1109/IEDM.2016.7838428
[6]   Resistance switching in two-terminal ferroelectric-semiconductor lateral heterostructures [J].
Asadi, Kamal .
APPLIED PHYSICS REVIEWS, 2020, 7 (02)
[7]  
Back C., 2020, J PHYS D APPL PHYS, V53, DOI [10.1088/1361-6463/ab8418, DOI 10.1088/1361-6463/AB8418]
[8]   Energy Bandpass Filtering in Superlattice Phase Change Memories [J].
Bahl, Jyotsna ;
Priyadarshi, Pankaj ;
Muralidharan, Bhaskaran .
IEEE TRANSACTIONS ON ELECTRON DEVICES, 2019, 66 (09) :3809-3815
[9]   Synaptic modification by correlated activity: Hebb's postulate revisited [J].
Bi, GQ ;
Poo, MM .
ANNUAL REVIEW OF NEUROSCIENCE, 2001, 24 :139-166
[10]   Evidence for Thermal-Based Transition in Super-Lattice Phase Change Memory [J].
Boniardi, Mattia ;
Boschker, Jos E. ;
Momand, Jamo ;
Kooi, Bart J. ;
Redaelli, Andrea ;
Calarco, Raffaella .
PHYSICA STATUS SOLIDI-RAPID RESEARCH LETTERS, 2019, 13 (04)