An unconditionally stable linearized CCD-ADI method for generalized nonlinear Schrodinger equations with variable coefficients in two and three dimensions
被引:30
作者:
He, Dongdong
论文数: 0引用数: 0
h-index: 0
机构:
Tongji Univ, Sch Aerosp Engn & Appl Mech, Shanghai 200092, Peoples R ChinaTongji Univ, Sch Aerosp Engn & Appl Mech, Shanghai 200092, Peoples R China
He, Dongdong
[1
]
Pan, Kejia
论文数: 0引用数: 0
h-index: 0
机构:
Cent S Univ, Sch Math & Stat, Changsha 410083, Hunan, Peoples R ChinaTongji Univ, Sch Aerosp Engn & Appl Mech, Shanghai 200092, Peoples R China
Pan, Kejia
[2
]
机构:
[1] Tongji Univ, Sch Aerosp Engn & Appl Mech, Shanghai 200092, Peoples R China
[2] Cent S Univ, Sch Math & Stat, Changsha 410083, Hunan, Peoples R China
In this paper, we propose a three-level linearly implicit combined compact difference method (CCD) together with alternating direction implicit method (ADI) for solving the generalized nonlinear Schrodinger equation (NLSE) with variable coefficients in two and three dimensions. The method is sixth-order accurate in space variable and second-order accurate in time variable. Fourier analysis shows that the method is unconditionally stable. Comparing to the nonlinear CCD-PRADI scheme for solving the 2D cubic NLSE with constant coefficients (Li et al., 2015), current method is a linear scheme which generally requires much less computational cost. Moreover, current method can handle 3D problems with variable coefficients naturally. Finally, numerical results for both 2D and 3D cases are presented to illustrate the advantages of the proposed method. (C) 2017 Elsevier Ltd. All rights reserved.
机构:
Amirkabir Univ Technol, Dept Appl Math, Fac Math & Comp Sci, Tehran 15914, IranAmirkabir Univ Technol, Dept Appl Math, Fac Math & Comp Sci, Tehran 15914, Iran
Dehghan, Mehdi
;
Mirzaei, Davoud
论文数: 0引用数: 0
h-index: 0
机构:
Amirkabir Univ Technol, Dept Appl Math, Fac Math & Comp Sci, Tehran 15914, IranAmirkabir Univ Technol, Dept Appl Math, Fac Math & Comp Sci, Tehran 15914, Iran
机构:
Amirkabir Univ Technol, Fac Math & Comp Sci, Dept Appl Math, Tehran 15914, IranAmirkabir Univ Technol, Fac Math & Comp Sci, Dept Appl Math, Tehran 15914, Iran
Dehghan, Mehdi
;
Emami-Naeini, Faezeh
论文数: 0引用数: 0
h-index: 0
机构:
Amirkabir Univ Technol, Fac Math & Comp Sci, Dept Appl Math, Tehran 15914, IranAmirkabir Univ Technol, Fac Math & Comp Sci, Dept Appl Math, Tehran 15914, Iran
机构:
Amirkabir Univ Technol, Dept Appl Math, Fac Math & Comp Sci, Tehran 15914, IranAmirkabir Univ Technol, Dept Appl Math, Fac Math & Comp Sci, Tehran 15914, Iran
Dehghan, Mehdi
;
Taleei, Ameneh
论文数: 0引用数: 0
h-index: 0
机构:
Amirkabir Univ Technol, Dept Appl Math, Fac Math & Comp Sci, Tehran 15914, IranAmirkabir Univ Technol, Dept Appl Math, Fac Math & Comp Sci, Tehran 15914, Iran
机构:
Amirkabir Univ Technol, Dept Appl Math, Fac Math & Comp Sci, Tehran 15914, IranAmirkabir Univ Technol, Dept Appl Math, Fac Math & Comp Sci, Tehran 15914, Iran
Dehghan, Mehdi
;
Mirzaei, Davoud
论文数: 0引用数: 0
h-index: 0
机构:
Amirkabir Univ Technol, Dept Appl Math, Fac Math & Comp Sci, Tehran 15914, IranAmirkabir Univ Technol, Dept Appl Math, Fac Math & Comp Sci, Tehran 15914, Iran
机构:
Amirkabir Univ Technol, Fac Math & Comp Sci, Dept Appl Math, Tehran 15914, IranAmirkabir Univ Technol, Fac Math & Comp Sci, Dept Appl Math, Tehran 15914, Iran
Dehghan, Mehdi
;
Emami-Naeini, Faezeh
论文数: 0引用数: 0
h-index: 0
机构:
Amirkabir Univ Technol, Fac Math & Comp Sci, Dept Appl Math, Tehran 15914, IranAmirkabir Univ Technol, Fac Math & Comp Sci, Dept Appl Math, Tehran 15914, Iran
机构:
Amirkabir Univ Technol, Dept Appl Math, Fac Math & Comp Sci, Tehran 15914, IranAmirkabir Univ Technol, Dept Appl Math, Fac Math & Comp Sci, Tehran 15914, Iran
Dehghan, Mehdi
;
Taleei, Ameneh
论文数: 0引用数: 0
h-index: 0
机构:
Amirkabir Univ Technol, Dept Appl Math, Fac Math & Comp Sci, Tehran 15914, IranAmirkabir Univ Technol, Dept Appl Math, Fac Math & Comp Sci, Tehran 15914, Iran