Spectral discretization of the Navier-Stokes problem with mixed boundary conditions

被引:3
作者
Daikh, Yasmina [1 ]
Yakoubi, Driss [2 ,3 ]
机构
[1] Univ Jijel, Lab Math Pures & Appl, BP 98, Ouled Aissa 18000, Jijel, Algeria
[2] Fields Inst Res Math Sci, 222 Coll St, Toronto, ON M5T 3J1, Canada
[3] Univ Laval, Dept Math & Stat, GIREF, Quebec City, PQ, Canada
关键词
Navier-Stokes problem; Mixed boundary conditions; Spectral methods; A priori estimates; FINITE-ELEMENT APPROXIMATION; VORTICITY-VELOCITY-PRESSURE; EQUATIONS; FORMULATION;
D O I
10.1016/j.apnum.2017.02.002
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider a variational formulation of the three dimensional Navier-Stokes equations provided with mixed boundary conditions. We write this formulation with three independent unknowns: the vorticity, the velocity and the pressure. Next, we propose a discretization by spectral methods. A detailed numerical analysis leads to a priori error estimates for the three unknowns. (C) 2017 IMACS. Published by Elsevier B.V. All rights reserved.
引用
收藏
页码:33 / 49
页数:17
相关论文
共 35 条
  • [1] Stabilized finite element method for Navier-Stokes equations with physical boundary conditions
    Amara, M.
    Capatina-Papaghiuc, D.
    Trujillo, D.
    [J]. MATHEMATICS OF COMPUTATION, 2007, 76 (259) : 1195 - 1217
  • [2] Amara M., 2004, Computing and Visualization in Science, V6, P47, DOI 10.1007/s00791-003-0107-y
  • [3] Spectral element discretization of the vorticity, velocity and pressure formulation of the Navier-Stokes problem
    Amoura, K.
    Azaieez, M.
    Bernardi, C.
    Chorti, N.
    Saadi, S.
    [J]. CALCOLO, 2007, 44 (03) : 165 - 188
  • [4] Amoura K., 2012, PROG COMPUT PHYS, V20, P42
  • [5] Amrouche C, 1998, MATH METHOD APPL SCI, V21, P823, DOI 10.1002/(SICI)1099-1476(199806)21:9<823::AID-MMA976>3.0.CO
  • [6] 2-B
  • [7] [Anonymous], 1988, SPECTRAL METHODS FLU
  • [8] [Anonymous], 2003, ITERATIVE METHODS SP, DOI DOI 10.1137/1.9780898718003
  • [9] Spectral discretization of the vorticity, velocity and pressure formulation of the Navier-Stokes equations
    Azaiez, Mejdi
    Bernardi, Christine
    Chorfi, Nejmeddine
    [J]. NUMERISCHE MATHEMATIK, 2006, 104 (01) : 1 - 26
  • [10] Begue C., 1988, NONLINEAR PARTIAL DI, VIX, P179