B-axis oriented alignment of LiFePO4 monocrystalline platelets by magnetic orientation for a high-performance lithium-ion battery

被引:16
|
作者
Zhou, Jiang [1 ]
Zhang, Dongyun [1 ]
Sun, Guanghan [1 ]
Chang, Chengkang [1 ,2 ]
机构
[1] Shanghai Inst Technol, Sch Mat Sci & Engn, 100 Haiquan Rd, Shanghai 201418, Peoples R China
[2] Shanghai Univ, Shanghai Inst Innovat Mat, 99 Shangda Rd, Shanghai 200444, Peoples R China
关键词
Lithium-iron phosphate; Magnetic orientation; B axis; Rate capability; Magnetic susceptibility; ELECTROCHEMICAL PROPERTIES; HYDROTHERMAL SYNTHESIS; CATHODE MATERIAL; LICOPO4; MICROSPHERES; MORPHOLOGY; NANOSHEETS; STABILITY; COMPOSITE;
D O I
10.1016/j.ssi.2019.05.002
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Lithium-iron phosphate (LiFePO4) monocrystalline platelets (LFP-P) with ac facet-preferred growing were obtained by a solvothermal method. Based on its anisotropy, a LiFePO4 cathode (LFP-PM) with the b axis-oriented aligning was prepared by magnetic orientation. The structure, morphology and magnetic performance of the LFP-P were studied by X-ray diffractometry, scanning-electron microscopy, transmission-electron microscopy and superconducting quantum-interference device technologies. The LFP-P exhibited paramagnetic behavior and its b axis had the largest magnetic susceptibility, which made the LFP-P stack parallel to the magnetic field. It resulted in a higher lithium-ion diffusion coefficient of the LFP-PM (1.6855 x 10(-11) cm(2)s(-1)) compared with that of the LiFePO4 cathode (LFP-PU) prepared without magnetic orientation (1.2538 x 10(-11) cm(2) s(-1)). The faster lithium-ion diffusion was contributed to a higher reversibility at 0.1 mV s(-1) and higher discharge capacities of the LFP-PM at high rates >= 2 C. For the first time, LiFePO4 monocrystalline platelets were made to align along b axis through magnetic orientation. It was proved to be an effective means of enhancing high rate performance.
引用
收藏
页码:96 / 102
页数:7
相关论文
共 50 条
  • [11] Surface modification of LiFePO4 by Coatings for Improving of Lithium-ion Battery Properties
    Zhao, Qun-fang
    Yu, Yong-hui
    Ouyang, Quan-sheng
    Hu, Min-yi
    Wang, Chang
    Ge, Jian-hua
    Zhang, Shu-qiong
    Jiang, Guang-hui
    INTERNATIONAL JOURNAL OF ELECTROCHEMICAL SCIENCE, 2022, 17 (11):
  • [12] Solvothermal synthesis of LiFePO4 nanorods as high-performance cathode materials for lithium ion batteries
    Wang, Yajing
    Zhu, Bo
    Wang, Yanming
    Wang, Fei
    CERAMICS INTERNATIONAL, 2016, 42 (08) : 10297 - 10303
  • [13] Preparation of carbon and oxide co-modified LiFePO4 cathode material for high performance lithium-ion battery
    Yang, Chun-Chen
    Jang, Jer-Huan
    Jiang, Jia-Rong
    MATERIALS CHEMISTRY AND PHYSICS, 2015, 165 : 196 - 206
  • [14] The Recent review of LiFePO4 Cathode Materials for Lithium-ion Battery
    Tang, Zhiyuan
    Wang, Xiaojing
    Yan, Ji
    Ma, Li
    2011 INTERNATIONAL CONFERENCE ON FUZZY SYSTEMS AND NEURAL COMPUTING (FSNC 2011), VOL VII, 2011, : 515 - 519
  • [15] The Recent review of LiFePO4 Cathode Materials for Lithium-ion Battery
    Tang, Zhiyuan
    Wang, Xiaojing
    Yan, Ji
    Ma, Li
    2011 AASRI CONFERENCE ON INFORMATION TECHNOLOGY AND ECONOMIC DEVELOPMENT (AASRI-ITED 2011), VOL 3, 2011, : 81 - 85
  • [16] Rational Design of Atomic-Layer-Deposited LiFePO4 as a High-Performance Cathode for Lithium-Ion Batteries
    Liu, Jian
    Banis, Mohammad N.
    Sun, Qian
    Lushington, Andrew
    Li, Ruying
    Sham, Tsun-Kong
    Sun, Xueliang
    ADVANCED MATERIALS, 2014, 26 (37) : 6472 - 6477
  • [17] Synthesis of LiFePO4/C cathode material for lithium-ion battery
    Tong Hui
    Hu Guo-Hua
    Hu Guo-Rong
    Peng Zhong-Dong
    Zhang Xin-Long
    CHINESE JOURNAL OF INORGANIC CHEMISTRY, 2006, 22 (12) : 2159 - 2164
  • [18] Preparation and characterization LiFePO4/C nanowires and their improved performance for lithium-ion batteries
    Li, Chunlong
    Bai, Ningbo
    Chen, Han
    Lu, Huayu
    Xiang, Kaixiong
    IONICS, 2015, 21 (09) : 2465 - 2469
  • [19] Effects of yttrium ion doping on electrochemical performance of LiFePO4/C cathodes for lithium-ion battery
    Junming Chen
    Xuchun Wang
    Zhipeng Ma
    Guangjie Shao
    Ionics, 2015, 21 : 2701 - 2708
  • [20] Effects of yttrium ion doping on electrochemical performance of LiFePO4/C cathodes for lithium-ion battery
    Chen, Junming
    Wang, Xuchun
    Ma, Zhipeng
    Shao, Guangjie
    IONICS, 2015, 21 (10) : 2701 - 2708