Lignin engineering in field-grown poplar trees affects the endosphere bacterial microbiome

被引:84
作者
Beckers, Bram [1 ]
De Beeck, Michiel Op [1 ,2 ]
Weyens, Nele [1 ]
Van Acker, Rebecca [3 ]
Van Montagu, Marc [3 ,4 ]
Boerjan, Wout [3 ,4 ]
Vangronsveld, Jaco [1 ]
机构
[1] Hasselt Univ, Ctr Environm Sci, B-3590 Diepenbeek, Belgium
[2] Lund Univ, Dept Biol, SE-22362 Lund, Sweden
[3] VIB, Dept Plant Syst Biol, B-9052 Ghent, Belgium
[4] Univ Ghent, Dept Plant Biotechnol & Bioinformat, B-9052 Ghent, Belgium
关键词
host genotype modulation; CCR gene silencing; plant-associated bacteria; COMMUNITIES; RHIZOSPHERE; ENDOPHYTES; REDUCTASE; PLANTS; NICHE;
D O I
10.1073/pnas.1523264113
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Cinnamoyl-CoA reductase (CCR), an enzyme central to the lignin bio-synthetic pathway, represents a promising biotechnological target to reduce lignin levels and to improve the commercial viability of lignocellulosic biomass. However, silencing of the CCR gene results in considerable flux changes of the general and monolignol-specific lignin pathways, ultimately leading to the accumulation of various extractable phenolic compounds in the xylem. Here, we evaluated host genotype-dependent effects of field-grown, CCR-down-regulated poplar trees (Populus tremula x Populus alba) on the bacterial rhizosphere microbiome and the endosphere microbiome, namely the microbiota present in roots, stems, and leaves. Plant-associated bacteria were isolated from all plant compartments by selective isolation and enrichment techniques with specific phenolic carbon sources (such as ferulic acid) that are up-regulated in CCR-deficient poplar trees. The bacterial microbiomes present in the endosphere were highly responsive to the CCR-deficient poplar genotype with remarkably different metabolic capacities and associated community structures compared with the WT trees. In contrast, the rhizosphere microbiome of CCR-deficient and WT poplar trees featured highly overlapping bacterial community structures and metabolic capacities. We demonstrate the host genotype modulation of the plant microbiome by minute genetic variations in the plant genome. Hence, these interactions need to be taken into consideration to understand the full consequences of plant metabolic pathway engineering and its relation with the environment and the intended genetic improvement.
引用
收藏
页码:2312 / 2317
页数:6
相关论文
共 47 条
  • [1] Anderson MJ, 2003, ECOLOGY, V84, P511, DOI 10.1890/0012-9658(2003)084[0511:CAOPCA]2.0.CO
  • [2] 2
  • [3] [Anonymous], 2013, Package vegan. Community ecology package
  • [4] Application of Natural Blends of Phytochemicals Derived from the Root Exudates of Arabidopsis to the Soil Reveal That Phenolic-related Compounds Predominantly Modulate the Soil Microbiome
    Badri, Dayakar V.
    Chaparro, Jacqueline M.
    Zhang, Ruifu
    Shen, Qirong
    Vivanco, Jorge M.
    [J]. JOURNAL OF BIOLOGICAL CHEMISTRY, 2013, 288 (07) : 4502 - 4512
  • [5] Plant lignin content altered by soil microbial community
    Bennett, Alison E.
    Grussu, Dominic
    Kam, Jason
    Caul, Sandra
    Halpin, Claire
    [J]. NEW PHYTOLOGIST, 2015, 206 (01) : 166 - 174
  • [6] Lignin biosynthesis
    Boerjan, W
    Ralph, J
    Baucher, M
    [J]. ANNUAL REVIEW OF PLANT BIOLOGY, 2003, 54 : 519 - 546
  • [7] Structure and Functions of the Bacterial Microbiota of Plants
    Bulgarelli, Davide
    Schlaeppi, Klaus
    Spaepen, Stijn
    van Themaat, Emiel Ver Loren
    Schulze-Lefert, Paul
    [J]. ANNUAL REVIEW OF PLANT BIOLOGY, VOL 64, 2013, 64 : 807 - 838
  • [8] Revealing structure and assembly cues for Arabidopsis root-inhabiting bacterial microbiota
    Bulgarelli, Davide
    Rott, Matthias
    Schlaeppi, Klaus
    van Themaat, Emiel Ver Loren
    Ahmadinejad, Nahal
    Assenza, Federica
    Rauf, Philipp
    Huettel, Bruno
    Reinhardt, Richard
    Schmelzer, Elmon
    Peplies, Joerg
    Gloeckner, Frank Oliver
    Amann, Rudolf
    Eickhorst, Thilo
    Schulze-Lefert, Paul
    [J]. NATURE, 2012, 488 (7409) : 91 - 95
  • [9] Lignin modification improves fermentable sugar yields for biofuel production
    Chen, Fang
    Dixon, Richard A.
    [J]. NATURE BIOTECHNOLOGY, 2007, 25 (07) : 759 - 761
  • [10] Plant growth-promoting bacteria in the rhizo- and endosphere of plants: Their role, colonization, mechanisms involved and prospects for utilization
    Compant, Stephane
    Clement, Christophe
    Sessitsch, Angela
    [J]. SOIL BIOLOGY & BIOCHEMISTRY, 2010, 42 (05) : 669 - 678