Rolling contact problem for an orthotropic medium

被引:14
作者
Alinia, Y. [1 ]
Zakerhaghighi, H. [2 ]
Adibnazari, S. [3 ]
Guler, M. A. [4 ]
机构
[1] Hakim Sabzevari Univ, Dept Mech Engn, Sabzevar, Iran
[2] Islamic Azad Univ, Sci & Res Branch, Dept Mech Engn, Tehran, Iran
[3] Sharif Univ, Dept Aerosp Engn, Tehran, Iran
[4] TOBB Univ Econ & Technol, Dept Mech Engn, TR-06560 Ankara, Turkey
关键词
MINIMUM PRINCIPLE; HERTZIAN CONTACT; DRY FRICTION; LAW;
D O I
10.1007/s00707-016-1718-y
中图分类号
O3 [力学];
学科分类号
08 ; 0801 ;
摘要
In this paper, the two-dimensional tractive rolling contact problem between a rigid cylinder and an orthotropic half plane is considered. A pair of singular integral equations is derived for the contact tractions using the Fourier transform technique. The governing integral equations are decoupled using the Goodman approximation and then solved numerically. Finally, the distribution of surface tractions is achieved in the contact region. This study emphasizes the significant effect of the orthotropic material parameters and the coefficient of friction on the contact tractions as well as the rolling contact characteristics for an orthotropic medium.
引用
收藏
页码:447 / 464
页数:18
相关论文
共 42 条
[1]  
[Anonymous], 1995, Fourier transforms
[2]  
[Anonymous], 1980, CONTACT PROBLEMS CLA, DOI [10.1007/978-94-009-9127-9, DOI 10.1007/978-94-009-9127-9]
[4]  
Barber JamesR., 2009, ELASTICITY, V3rd
[5]   Contact mechanics [J].
Barber, JR ;
Ciavarella, M .
INTERNATIONAL JOURNAL OF SOLIDS AND STRUCTURES, 2000, 37 (1-2) :29-43
[6]  
Bentall R.H., 1967, INT J MECH SCI, V9, P389
[7]   Application of BEM to generalized plane problems for anisotropic elastic materials in presence of contact [J].
Blazquez, A. ;
Mantic, V. ;
Paris, F. .
ENGINEERING ANALYSIS WITH BOUNDARY ELEMENTS, 2006, 30 (06) :489-502
[8]  
Carter F., 1926, P ROYAL SOC LOND MAT
[9]   ELASTIC CONTACT BETWEEN A SPHERE AND A SEMI-INFINITE TRANSVERSELY ISOTROPIC BODY [J].
DAHAN, M ;
ZARKA, J .
INTERNATIONAL JOURNAL OF SOLIDS AND STRUCTURES, 1977, 13 (03) :229-238
[10]   A plane contact problem for an elastic orthotropic strip [J].
Erbas, B. ;
Yusufoglu, E. ;
Kaplunov, J. .
JOURNAL OF ENGINEERING MATHEMATICS, 2011, 70 (04) :399-409