Thermal Characterization Using Optical Methods of AlGaN/GaN HEMTs on SiC Substrate in RF Operating Conditions

被引:44
作者
Baczkowski, Leny [1 ,2 ]
Jacquet, Jean-Claude [3 ]
Jardel, Olivier [3 ]
Gaquiere, Chistophe [1 ]
Moreau, Myriam [4 ]
Carisetti, Dominique [5 ]
Brunel, Laurent [6 ]
Vouzelaud, Franck [2 ]
Mancuso, Yves [2 ]
机构
[1] Univ Lille, Inst Elect Microelect & Nanotechnol, F-59652 Villeneuve Dascq, France
[2] Thales Syst Aeroportes, F-78990 Elancourt, France
[3] Alcatel Thales III V Lab, F-91460 Marcoussis, France
[4] Univ Lille, Lab Spectrochim Infrarouge & Raman, F-59652 Villeneuve Dascq, France
[5] Thales Res & Technol, F-91120 Palaiseau, France
[6] United Monolith Semicond, F-91140 Villebon Sur Yvette, France
关键词
Gallium nitride (GaN); high electron-mobility transistors (HEMTs); infrared (IR) imaging; Raman scattering; RF signals; simulation; spectroscopy; temperature measurement; thermoreflectance imaging; BOUNDARY RESISTANCE; TEMPERATURE; GAN; THERMOREFLECTANCE; DEVICES;
D O I
10.1109/TED.2015.2493204
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Performance and reliability of wide bandgap high-power amplifiers are correlated with their thermal behavior. Thermal model development and suitable temperature measurement systems are necessary to quantify the channel temperature of devices in real operating conditions. As a direct temperature measurement within a channel is most of the time not achievable, the common approach is to measure the device temperature at different locations close to the hotspot and then to use simulations to estimate the channel temperature. This paper describes a complete thermal characterization of AlGaN/gallium nitride (GaN) on silicon carbide high electron-mobility transistors (HEMTs) when devices are operating in dc bias, pulsed, and continuous wave. Infrared thermography, charge-coupled device-based thermoreflectance microscopy, and micro-Raman spectroscopy have been performed to extract the thermal resistance of the components. Results have been compared with simulations using a 3-D finite-element model to estimate the operating channel temperature. Measurements have shown that the RF-biased thermal resistance and the dc-biased thermal resistance of GaN HEMTs are similar.
引用
收藏
页码:3992 / 3998
页数:7
相关论文
共 27 条
  • [11] Kuball M., 2005, P ISDRS BETH MD US D, P246
  • [12] Benchmarking of Thermal Boundary Resistance in AlGaN/GaN HEMTs on SiC Substrates: Implications of the Nucleation Layer Microstructure
    Manoi, Athikom
    Pomeroy, James W.
    Killat, Nicole
    Kuball, Martin
    [J]. IEEE ELECTRON DEVICE LETTERS, 2010, 31 (12) : 1395 - 1397
  • [13] McDonald J.D., 1997, ELECT COOLING, V3, P26
  • [14] GaN-Based RF power devices and amplifiers
    Mishra, Umesh K.
    Shen, Likun
    Kazior, Thomas E.
    Wu, Yi-Feng
    [J]. PROCEEDINGS OF THE IEEE, 2008, 96 (02) : 287 - 305
  • [15] Onodera H, 2012, EUR MICROW INTEGRAT, P401
  • [16] A Review of GaN on SiC High Electron-Mobility Power Transistors and MMICs
    Pengelly, Raymond S.
    Wood, Simon M.
    Milligan, James W.
    Sheppard, Scott T.
    Pribble, William L.
    [J]. IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, 2012, 60 (06) : 1764 - 1783
  • [17] Temperature analysis of AlGaN/GaN high-electron-mobility transistors using micro-raman scattering spectroscopy and transient interferometric mapping
    Pichonat, E.
    Kuzmik, J.
    Bychikhin, S.
    Pogany, D.
    Poisson, M. A.
    Grimbert, B.
    Gaquiere, C.
    [J]. 2006 EUROPEAN MICROWAVE INTEGRATED CIRCUITS CONFERENCE, 2006, : 54 - +
  • [18] Piotrowicz S., 2012, P IEEE CSICS OCT, P1
  • [19] Thermal boundary resistance between GaN and substrate in AlGaN/GaN electronic devices
    Sarua, Andrei
    Ji, Hangfeng
    Hilton, K. P.
    Wallis, D. J.
    Uren, Michael J.
    Martin, T.
    Kuball, Martin
    [J]. IEEE TRANSACTIONS ON ELECTRON DEVICES, 2007, 54 (12) : 3152 - 3158
  • [20] Integrated micro-Raman/Infrared thermography probe for monitoring of self-heating in AlGaN/GaN transistor structures
    Sarua, Andrei
    Ji, Hangfeng
    Kuball, Martin
    Uren, Michael J.
    Martin, Trevor
    Hilton, Keith P.
    Balmer, Richard S.
    [J]. IEEE TRANSACTIONS ON ELECTRON DEVICES, 2006, 53 (10) : 2438 - 2447