A 15-Gb/s 2.4-V optical receiver using a Ge-on-SOI photodiode and a CMOS IC

被引:35
作者
Schow, C. L. [1 ]
Schares, L. [1 ]
Koester, S. J. [1 ]
Dehlinger, G. [1 ]
John, R. [1 ]
Doany, F. E. [1 ]
机构
[1] IBM Corp, Thomas J Watson Res Ctr, Yorktown Hts, NY 10598 USA
关键词
complementary metal-oxide-semiconductor (CMOS) analog integrated circuits; germanium (Ge); optical receivers; photodiodes; silicon-on-insulator (SOI) technology;
D O I
10.1109/LPT.2006.880770
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
We report the fastest (15 Gb/s), and lowest voltage (2.4 V) all-silicon-based optical. receiver to date. The receiver consists of a lateral, interdigitated, germanium-on-silicon-on-insulator (Ge-on-SOI) photodiode wire-bonded to a 0.13-mu m complementary metal-oxide-semiconductor (CMOSI) receiver integrated circuit (IC). The photodiode has an external quantum efficiency of 52% at lambda = 850 nm and a dark current of 10 nA at -2 V. The small-signal transimpedance of the receiver is 91-dB Omega and the bandwidth is 6.6 GHz. At a bit-error rate of 10(-12) and lambda = 850 nm; the receiver exhibits sensitivities of - 11.0, - 9.6, and - 7.4 dBm at 12.5, 14, and 15 Gb/s, respectively. The receiver operates error-free at rates up to 10 Gb/s with an IC supply voltage as low as 1.5 V and with a photodiode bias as low as 0.5 V. The power consumption is 3 to 7 mW/Gb/s. The Ge-on-S01 photodiode is well suited for integration with CMOS processing, raising the possibility of producing high-performance, low-voltage, monolithically integrated receivers based on this technology in the future.
引用
收藏
页码:1981 / 1983
页数:3
相关论文
共 11 条
[1]   A 1.8-V 10-Gb/s fully integrated CMOS optical receiver analog front-end [J].
Chen, WZ ;
Cheng, YL ;
Lin, DS .
IEEE JOURNAL OF SOLID-STATE CIRCUITS, 2005, 40 (06) :1388-1396
[2]   Ge on Si p-i-n photodiodes operating at 10 Gbit/s [J].
Colace, L ;
Balbi, M ;
Masini, G ;
Assanto, G ;
Luan, HC ;
Kimerling, LC .
APPLIED PHYSICS LETTERS, 2006, 88 (10)
[3]   High-speed monolithically integrated silicon photoreceivers fabricated in 130-nm CMOS technology [J].
Csutak, SM ;
Schaub, JD ;
Wu, WE ;
Shimer, R ;
Campbell, JC .
JOURNAL OF LIGHTWAVE TECHNOLOGY, 2002, 20 (09) :1724-1729
[4]   High-speed germanium-on-SOI lateral PIN photodiodes [J].
Dehlinger, G ;
Koester, SJ ;
Schaub, JD ;
Chu, JO ;
Ouyang, QC ;
Grill, A .
IEEE PHOTONICS TECHNOLOGY LETTERS, 2004, 16 (11) :2547-2549
[5]  
GUCKENBERGER D, 2005, P IEEE RFIC S LONG B
[6]   Ge-on-Si vertical incidence photodiodes with 39-GHz bandwidth [J].
Jutzi, M ;
Berroth, M ;
Wöhl, G ;
Oehme, M ;
Kasper, E .
IEEE PHOTONICS TECHNOLOGY LETTERS, 2005, 17 (07) :1510-1512
[7]  
KOESTER SJ, 2006, IN PRESS IEEE J SEL
[8]   A low-power 20-GHz 52-dBΩ transimpedance amplifier in 80-nm CMOS [J].
Kromer, C ;
Sialm, G ;
Morf, T ;
Schmatz, ML ;
Ellinger, F ;
Erni, D ;
Jäckel, H .
IEEE JOURNAL OF SOLID-STATE CIRCUITS, 2004, 39 (06) :885-894
[9]   DC-to-15- and DC-to-30-GHz CMOS distributed transimpedance amplifiers [J].
Liu, RC ;
Wang, H .
2004 IEEE RADIO FREQUENCY INTEGRATED CIRCUITS (RFIC) SYMPOSIUM, DIGEST OF PAPERS, 2004, :535-538
[10]  
SWOBODA R, 2006, P ISSCC SAN FRANC CA