Traveling Wave Solutions of a Diffusive SEIR Epidemic Model with Nonlinear Incidence Rate

被引:13
作者
Zhao, Lin [1 ]
Zhang, Liang [2 ]
Huo, Haifeng [1 ]
机构
[1] Lanzhou Univ Technol, Dept Appl Math, Lanzhou 730050, Gansu, Peoples R China
[2] Lanzhou Univ, Sch Math & Stat, Lanzhou 730000, Gansu, Peoples R China
来源
TAIWANESE JOURNAL OF MATHEMATICS | 2019年 / 23卷 / 04期
基金
中国国家自然科学基金;
关键词
SEIR epidemic model; nonlinear incidence rate; the basic reproduction number; the minimal speed; traveling wave solutions; COMPARTMENTAL-MODELS; GLOBAL STABILITY; DYNAMICS; BEHAVIOR; SIR;
D O I
10.11650/tjm/181009
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
This paper is concerned with the existence and nonexistence of traveling wave solutions of a diffusive SEIR epidemic model with nonlinear incidence rate, which are determined by the basic reproduction number R-0 and the minimal wave speed c*. Namely, the system admits a nontrivial traveling wave solution if R-0 > 1 and c >= c* and then the non-existence of traveling wave solutions of the system is established if R-0 > 1 and 0 < c < c*. Especially, using numerical simulation, we give the basic framework of traveling wave solutions of the system.
引用
收藏
页码:951 / 980
页数:30
相关论文
共 40 条
[1]  
Al-Sheikh S.A., 2012, GLOBAL J SCI FRONTIE, V12, P55
[2]  
ANDERSON R M, 1991
[3]   POPULATION-DYNAMICS OF THE BADGER (MELES-MELES) AND THE EPIDEMIOLOGY OF BOVINE TUBERCULOSIS (MYCOBACTERIUM-BOVIS) [J].
ANDERSON, RM ;
TREWHELLA, W .
PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY B-BIOLOGICAL SCIENCES, 1985, 310 (1145) :327-381
[4]   THE KERMACK-MCKENDRICK EPIDEMIC THRESHOLD THEOREM - DISCUSSION [J].
ANDERSON, RM .
BULLETIN OF MATHEMATICAL BIOLOGY, 1991, 53 (1-2) :3-32
[5]  
Brauer F, 2008, LECT NOTES MATH, V1945, P19
[6]   RUN FOR YOUR LIFE - NOTE ON THE ASYMPTOTIC SPEED OF PROPAGATION OF AN EPIDEMIC [J].
DIEKMANN, O .
JOURNAL OF DIFFERENTIAL EQUATIONS, 1979, 33 (01) :58-73
[7]   MODELING AND ANALYSIS OF AN SEIR MODEL WITH DIFFERENT TYPES OF NONLINEAR TREATMENT RATES [J].
Dubey, B. ;
Patra, Atasi ;
Srivastava, P. K. ;
Dubey, Uma S. .
JOURNAL OF BIOLOGICAL SYSTEMS, 2013, 21 (03)
[8]   Travelling wave solutions for an infection-age structured epidemic model with external supplies [J].
Ducrot, Arnaud ;
Magal, Pierre .
NONLINEARITY, 2011, 24 (10) :2891-2911
[9]   Travelling Wave Solutions in Multigroup Age-Structured Epidemic Models [J].
Ducrot, Arnaut ;
Magal, Pierre ;
Ruan, Shigui .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2010, 195 (01) :311-331
[10]   Wave propagation in predator-prey systems [J].
Fu, Sheng-Chen ;
Tsai, Je-Chiang .
NONLINEARITY, 2015, 28 (12) :4389-4423