SECOND-ORDER RADIAL-ASYMPTOTIC DERIVATIVES AND APPLICATIONS IN SET-VALUED VECTOR OPTIMIZATION

被引:0
作者
Tung, L. T. [1 ]
机构
[1] Can Tho Univ, Coll Nat Sci, Dept Math, Can Tho, Vietnam
来源
PACIFIC JOURNAL OF OPTIMIZATION | 2017年 / 13卷 / 01期
关键词
second-order radial-asymptotic derivatives; calculus rules; set-valued vector optimization; second-order optimality conditions; proper perturbation map; second-order sensitivity analysis; OPTIMALITY CONDITIONS; SENSITIVITY-ANALYSIS; CONTINGENT DERIVATIVES; MAPS; EPIDERIVATIVES;
D O I
暂无
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
We propose the notion of second-order radial-asymptotic derivatives of a set-valued map, establish some simple calculus rules and apply directly them to obtain optimality conditions for some particular optimization problems. Then, we employ these derivatives together with second-order contingent derivatives to analyze sensitivity for nonsmooth set-valued vector optimization. Properties of second-order contingent derivatives of the proper perturbation maps of a parameterized optimization problem are obtained.
引用
收藏
页码:137 / 153
页数:17
相关论文
共 30 条
[21]  
Rockafellar R., 2010, VARIATIONAL ANAL
[22]  
Shi D. S. J., 1991, OPTIM THEORY APPL, V70, P385
[23]   NECESSARY AND SUFFICIENT CONDITIONS FOR ISOLATED LOCAL MINIMA OF NONSMOOTH FUNCTIONS [J].
STUDNIARSKI, M .
SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 1986, 24 (05) :1044-1049
[24]  
Sun XK, 2012, PAC J OPTIM, V8, P307
[25]  
Taa A., 1996, Optimization, V36, P97, DOI 10.1080/02331939608844169
[26]   STABILITY AND SENSITIVITY ANALYSIS IN CONVEX VECTOR OPTIMIZATION [J].
TANINO, T .
SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 1988, 26 (03) :521-536
[27]   SENSITIVITY ANALYSIS IN MULTIOBJECTIVE OPTIMIZATION [J].
TANINO, T .
JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 1988, 56 (03) :479-499
[28]  
Tung L. T., 2014, CAN THO U J SCI, V35, P111
[29]   Sensitivity and stability for the second-order contingent derivative of the proper perturbation map in vector optimization [J].
Wang, Q. L. ;
Li, S. J. .
OPTIMIZATION LETTERS, 2012, 6 (04) :731-748
[30]   A chain rule for first- and second-order epiderivatives and hypoderivatives [J].
Ward, D. E. .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2008, 348 (01) :324-336