A High-Accuracy of Transmission Line Faults (TLFs) Classification Based on Convolutional Neural Network

被引:7
作者
Fuada, S. [1 ]
Shiddieqy, H. A. [2 ]
Adiono, T. [2 ]
机构
[1] Univ Pendidikan Indonesia, Program Studi Sistem Telekomunikasi, Bandung, Indonesia
[2] Inst Teknol Bandung, Univ Ctr Excellence Microelect, Bandung, Indonesia
关键词
fault detection; fault classification; transmission lines; convolutional neural network; machine learning;
D O I
10.24425/ijet.2020.134024
中图分类号
TN [电子技术、通信技术];
学科分类号
0809 ;
摘要
To improve power system reliability, a protection mechanism is highly needed. Early detection can be used to prevent failures in the power transmission line (TL). A classification system method is widely used to protect against false detection as well as assist the decision analysis. Each TL signal has a continuous pattern in which it can be detected and classified by the conventional methods, i.e., wavelet feature extraction and artificial neural network (ANN). However, the accuracy resulting from these mentioned models is relatively low. To overcome this issue, we propose a machine learning-based on Convolutional Neural Network (CNN) for the transmission line faults (TLFs) application. CNN is more suitable for pattern recognition compared to conventional ANN and ANN with Discrete Wavelet Transform (DWT) feature extraction. In this work, we first simulate our proposed model by using Simulink (R) and Matlab (R). This simulation generates a fault signal dataset, which is divided into 45.738 data training and 4.752 data tests. Later, we design the number of machine learning classifiers. Each model classifier is trained by exposing it to the same dataset. The CNN design, with raw input, is determined as an optimal output model from the training process with 100% accuracy.
引用
收藏
页码:655 / 664
页数:10
相关论文
共 50 条
  • [31] Female Apparel Classification based on Convolutional Neural Network
    Li, Qiao-Qi
    Zhong, Yue-Qi
    Wang, Xin
    TEXTILE BIOENGINEERING AND INFORMATICS SYMPOSIUM (TBIS) PROCEEDINGS, 2018, 2018, : 575 - 581
  • [32] An SSVEP Classification Method Based on a Convolutional Neural Network
    Lei, Dongyang
    Dong, Chaoyi
    Ma, Pengfei
    Lin, Ruijing
    Liu, Huanzi
    Chen, Xiaoyan
    2023 35TH CHINESE CONTROL AND DECISION CONFERENCE, CCDC, 2023, : 4899 - 4904
  • [33] TV Logo Classification Based on Convolutional Neural Network
    Da Pan
    Ping Shi
    Qiu, Zihe
    Yuan Sha
    Xiu Zhingdi
    Jing Zhoushao
    2016 IEEE INTERNATIONAL CONFERENCE ON INFORMATION AND AUTOMATION (ICIA), 2016, : 1793 - 1796
  • [34] Fault Text Classification Based on Convolutional Neural Network
    Wang, Lixia
    Zhang, Botao
    2020 IEEE 7TH INTERNATIONAL CONFERENCE ON INDUSTRIAL ENGINEERING AND APPLICATIONS (ICIEA 2020), 2020, : 937 - 941
  • [35] Image Classification Based on the Boost Convolutional Neural Network
    Lee, Shin-Jye
    Chen, Tonglin
    Yu, Lun
    Lai, Chin-Hui
    IEEE ACCESS, 2018, 6 : 12755 - 12768
  • [36] Vehicle Type Classification based on Convolutional Neural Network
    Chen, Yanjun
    Zhu, Wenxing
    Yao, Donghui
    Zhang, Lidong
    2017 CHINESE AUTOMATION CONGRESS (CAC), 2017, : 1898 - 1901
  • [37] Music Classification and Identification Based on Convolutional Neural Network
    Yuan Y.
    Liu J.
    Computer-Aided Design and Applications, 2024, 21 (S18): : 205 - 221
  • [38] CONVOLUTIONAL NEURAL NETWORK BASED CLASSIFICATION FOR HYPERSPECTRAL DATA
    Jia, Peiyuan
    Zhang, Miao
    Yu, Wenbo
    Shen, Fei
    Shen, Yi
    2016 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS), 2016, : 5075 - 5078
  • [39] Classification of Trackside Equipment Based on Convolutional Neural Network
    Li, Weidong
    Li, Jinshuang
    Liu, Yang
    PROCEEDINGS OF THE 32ND 2020 CHINESE CONTROL AND DECISION CONFERENCE (CCDC 2020), 2020, : 4806 - 4811
  • [40] Automatic Recognition of Faults in Mining Areas Based on Convolutional Neural Network
    Zou, Guangui
    Liu, Hui
    Ren, Ke
    Deng, Bowen
    Xue, Jingwen
    ENERGIES, 2022, 15 (10)