Arithmetic of Linear Algebraic Groups over Two-dimensional Fields

被引:0
作者
Parimala, R. [1 ]
机构
[1] Emory Univ, Dept Math & Comp Sci, 400 Dowman Dr, Atlanta, GA 30322 USA
来源
PROCEEDINGS OF THE INTERNATIONAL CONGRESS OF MATHEMATICIANS, VOL I: PLENARY LECTURES AND CEREMONIES | 2010年
关键词
Linear algebraic groups; Galois Cohomology; Conjecture II; Hasse principle; QUASI-SPLIT GROUPS; GALOIS COHOMOLOGY; CLASSICAL-GROUPS; R-EQUIVALENCE; BRAUER GROUP; HASSE PRINCIPLE; INVARIANT; THEOREMS;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In 1962 Serre posed a conjecture, now referred to as Conjecture II, which states that principal homogeneous spaces under semisimple simply connected linear algebraic groups over perfect fields of cohomological dimension two have rational points. In this talk, after summarising the status of Conjecture II, we shall discuss progress concerning the study of principal homogeneous spaces under linear algebraic groups over function fields of two-dimensional schemes: surfaces over algebraically closed fields, strict Henselian two dimensional local domains and arithmetic surfaces that are relative curves over p-adic integers.
引用
收藏
页码:339 / 361
页数:23
相关论文
共 72 条
  • [1] [Anonymous], 1972, LECT NOTES MATH
  • [2] [Anonymous], 1996, Doc. Math.
  • [3] [Anonymous], SEM C SOC MATH FRANC
  • [4] [Anonymous], 1998, Abelian Galois cohomology of reductive groups
  • [5] [Anonymous], 1997, PUBL MATH-PARIS
  • [6] Arason J. K., 1984, QUADRATIC HERMITIAN, V4, P17
  • [7] COHOMOLOGICAL INVARIANTS OF QUADRATIC-FORMS
    ARASON, JK
    [J]. JOURNAL OF ALGEBRA, 1975, 36 (03) : 448 - 491
  • [8] FIELDS OF COHOMOLOGICAL 2-DIMENSION-3
    ARASON, JK
    ELMAN, R
    JACOB, B
    [J]. MATHEMATISCHE ANNALEN, 1986, 274 (04) : 649 - 657
  • [9] Artin M., 1982, Lect. Notes Math., P194
  • [10] ARTIN M, 1972, LECT NOTES MATH, V305