The Structure of the Cu-CuO Sites Determines the Catalytic Activity of Cu Nanoparticles

被引:48
作者
Caldas, Paula C. P. [1 ]
Gallo, Jean Marcel R. [2 ]
Lopez-Castillo, Alejandro [2 ]
Zanchet, Daniela [3 ]
Bueno, Jose Maria C. [1 ]
机构
[1] Univ Fed Sao Carlos, Dept Chem Engn, POB 676, BR-13565905 Sao Carlos, SP, Brazil
[2] Univ Fed Sao Carlos, Dept Chem, POB 676, BR-13565905 Sao Carlos, SP, Brazil
[3] Univ Estadual Campinas, Inst Chem, POB 6154, BR-13083970 Campinas, SP, Brazil
来源
ACS CATALYSIS | 2017年 / 7卷 / 04期
基金
巴西圣保罗研究基金会;
关键词
water gas shift; Cu-CuO sites; cerium oxide; surface science; heterogeneous catalysis; metal-support interface; GAS-SHIFT REACTION; DENSITY-FUNCTIONAL THEORY; METAL-OXIDE INTERFACE; IN-SITU; METHANOL SYNTHESIS; CU/ZNO CATALYSTS; OXYGEN VACANCIES; PARTICLE-SIZE; WATER; COPPER;
D O I
10.1021/acscatal.6b03642
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The effect of nanosized ceria on supported Cu nanoparticles was investigated at an atomic level and correlated to the catalytic activity on the water gas shift reaction (WGSR) rate. For Cu/Al2O3, increasing the Cu nanoparticle size leads to a decrease in the oxygen coverage and an increase in the bond length of Cu-O. When different loadings of nanosized ceria are introduced to the Cu/Al2O3 catalysts, no significant change occurred in the Cu particle size, the Cu-Cu bond length, or the oxygen coverage. However, ceria is able to interact with the Cu nanoparticles to increase the Cu-O bond length, and a linear correlation between ceria loading, Cu-O bond length, and WGSR rate was found. Hence, while previous reports claim that ceria leads to Cu nanoparticle stabilization or interface active sites, we have shown that the ceria tailors the Cu-O bond length, which has been shown to be a determinant of the WGSR rate.
引用
收藏
页码:2419 / 2424
页数:6
相关论文
共 52 条
[11]   Determination of the dispersion and surface oxidation states of supported Cu catalysts [J].
Dandekar, A ;
Vannice, MA .
JOURNAL OF CATALYSIS, 1998, 178 (02) :621-639
[12]   Carbon-supported copper catalysts II. Crotonaldehyde hydrogenation [J].
Dandekar, A ;
Baker, RTK ;
Vannice, MA .
JOURNAL OF CATALYSIS, 1999, 184 (02) :421-439
[13]  
Efstathiou AM, 2016, SPR-CATAL, V28, P175, DOI 10.1039/9781782626855-00175
[14]   Ceria Maintains Smaller Metal Catalyst Particles by Strong Metal-Support Bonding [J].
Farmer, Jason A. ;
Campbell, Charles T. .
SCIENCE, 2010, 329 (5994) :933-936
[15]   Trends in the Reactivity of Molecular O2 with Copper Clusters: Influence of Size and Shape [J].
Fernandez, Estefania ;
Boronat, Mercedes ;
Corma, Avelino .
JOURNAL OF PHYSICAL CHEMISTRY C, 2015, 119 (34) :19832-19846
[16]   The Effect of Ag in the Cu/ZrO2 Performance for the Ethanol Conversion [J].
Freitas, Isabel C. ;
Gallo, Jean Marcel R. ;
Bueno, Jose Maria C. ;
Marques, Clelia M. P. .
TOPICS IN CATALYSIS, 2016, 59 (2-4) :357-365
[17]   A view from the inside: Complexity in the atomic scale ordering of supported metal nanoparticles [J].
Frenkel, AI ;
Hills, CW ;
Nuzzo, RG .
JOURNAL OF PHYSICAL CHEMISTRY B, 2001, 105 (51) :12689-12703
[18]   MODEL STUDIES IN CATALYSIS USING SURFACE SCIENCE PROBES [J].
GOODMAN, DW .
CHEMICAL REVIEWS, 1995, 95 (03) :523-536
[19]   In situ investigations of structural changes in Cu/ZnO catalysts [J].
Grunwaldt, JD ;
Molenbroek, AM ;
Topsoe, NY ;
Topsoe, H ;
Clausen, BS .
JOURNAL OF CATALYSIS, 2000, 194 (02) :452-460
[20]   Characterization of oxide surfaces and zeolites by carbon monoxide as an IR probe molecule [J].
Hadjiivanov, KI ;
Vayssilov, GN .
ADVANCES IN CATALYSIS, VOL 47, 2002, 47 :307-511