Analysis of a multiscale discontinuous Galerkin method for convection-diffusion problems

被引:72
作者
Buffa, A.
Hughes, T. J. R.
Sangalli, G.
机构
[1] CNR, Ist Matemat Appl & Tecnol Informat, I-27100 Pavia, Italy
[2] Univ Texas, Inst Computat Engn & Sci, Austin, TX 78712 USA
[3] Univ Pavia, Dipartimento Matemat F Casorati, I-27100 Pavia, Italy
关键词
multiscale; discontinuous Galerkin; convection-diffusion;
D O I
10.1137/050640382
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study a multiscale discontinuous Galerkin method introduced in [T. J. R. Hughes, G. Scovazzi, P. Bochev, and A. Buffa, Comput. Meth. Appl. Mech. Engrg., 195 (2006), pp. 2761-2787] that reduces the computational complexity of the discontinuous Galerkin method, seemingly without adversely affecting the quality of results. For a stabilized variant we are able to obtain the same error estimates for the convection-diffusion equation as for the usual discontinuous Galerkin method. We assess the stability of the unstabilized case numerically and find that the inf-sup constant is positive, bounded uniformly away from zero, and very similar to that for the usual discontinuous Galerkin method.
引用
收藏
页码:1420 / 1440
页数:21
相关论文
共 23 条
[1]   Unified analysis of discontinuous Galerkin methods for elliptic problems [J].
Arnold, DN ;
Brezzi, F ;
Cockburn, B ;
Marini, LD .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 2002, 39 (05) :1749-1779
[2]  
Bathe KJ, 2000, INT J NUMER METH ENG, V48, P745, DOI 10.1002/(SICI)1097-0207(20000620)48:5<745::AID-NME904>3.0.CO
[3]  
2-E
[4]   A multiscale discontinuous Galerkin method [J].
Bochev, P ;
Hughes, TJR ;
Scovazzi, G .
LARGE-SCALE SCIENTIFIC COMPUTING, 2006, 3743 :84-93
[5]   CHOOSING BUBBLES FOR ADVECTION-DIFFUSION PROBLEMS [J].
BREZZI, F ;
RUSSO, A .
MATHEMATICAL MODELS & METHODS IN APPLIED SCIENCES, 1994, 4 (04) :571-587
[6]  
Brezzi F, 2000, NUMER MATH, V85, P31, DOI 10.1007/s002110000128
[7]   b=integral g [J].
Brezzi, F ;
Franca, LP ;
Hughes, TJR ;
Russo, A .
COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 1997, 145 (3-4) :329-339
[8]   STREAMLINE UPWIND PETROV-GALERKIN FORMULATIONS FOR CONVECTION DOMINATED FLOWS WITH PARTICULAR EMPHASIS ON THE INCOMPRESSIBLE NAVIER-STOKES EQUATIONS [J].
BROOKS, AN ;
HUGHES, TJR .
COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 1982, 32 (1-3) :199-259
[9]  
CIARLET P. G., 1978, The Finite Element Method for Elliptic Problems
[10]  
COCKBURN B, 2004, ENCY COMPUTATIONAL M, V3, P91